If $cos \theta_{1} +cos \theta_{2}+cos \theta_{3}+cos \theta_{4}+cos \theta_{5} = 5$, find the value of $sin \theta_{1} +sin \theta_{2}+sin \theta_{3}+sin \theta_{4}+sin \theta_{5}$.
Given :
$cos \theta_{1} +cos \theta_{2}+cos \theta_{3}+cos \theta_{4}+cos \theta_{5} = 5$.
To do :
We have to find the value of $sin \theta_{1} +sin \theta_{2}+sin \theta_{3}+sin \theta_{4}+sin \theta_{5}$.
Solution :
$cos \theta_{1} +cos \theta_{2}+cos \theta_{3}+cos \theta_{4}+cos \theta_{5} = 5$
We know that,
cos 0° $=$ 1
$ \theta_{1}= \theta_{2}= \theta_{3}= \theta_{4}= \theta_{5}=1$
$1+1+1+1+1 = 5$
So, $\theta = 0°$.
sin 0° $=$ 0
$sin \theta_{1} +sin \theta_{2}+sin \theta_{3}+sin \theta_{4}+sin \theta_{5}= 0+0+0+0+0 = 0$.
Therefore, the value of $sin \theta_{1} +sin \theta_{2}+sin \theta_{3}+sin \theta_{4}+sin \theta_{5}$ is 0.
- Related Articles
- If \( \cos A+\cos ^{2} A=1 \), prove that \( \sin ^{2} A+\sin ^{4} A=1 \)
- If $sin\theta+sin^{2}\theta=1$, then evaluate $cos^{2}\theta+cos^{4}\theta$.
- If \( 3 \cos \theta-4 \sin \theta=2 \cos \theta+\sin \theta \), find \( \tan \theta \).
- If \( \cos \theta+\cos ^{2} \theta=1 \), prove that\( \sin ^{12} \theta+3 \sin ^{10} \theta+3 \sin ^{8} \theta+\sin ^{6} \theta+2 \sin ^{4} \theta+2 \sin ^{2} \theta-2=1 \)
- Prove: $\sin ^{6} \theta+\cos ^{6} \theta=1-3 \sin ^{2} \theta \cos ^{2} \theta$.
- If \( 4 \tan \theta=3 \), evaluate \( \frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1} \)
- If $3\ tan\ θ = 4$, find the value of $\frac{4\ cos\ θ – sin\ θ}{2\ cos\ θ+sin\ θ}$.
- If \( \sin \theta+2 \cos \theta=1 \) prove that \( 2 \sin \theta-\cos \theta=2 . \)
- If $3\ cot\ \theta = 2$, find the value of $\frac{4\ sin\ θ−3\ cos\ θ}{2\ sin\ θ+6\ cos\ θ}$.
- If \( \cos \theta=\frac{5}{13} \), find the value of \( \frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cos \theta} \times \frac{1}{\tan ^{2} \theta} \)
- Prove that:\( \frac{1+\cos \theta+\sin \theta}{1+\cos \theta-\sin \theta}=\frac{1+\sin \theta}{\cos \theta} \)
- Prove the following identities:If \( 3 \sin \theta+5 \cos \theta=5 \), prove that \( 5 \sin \theta-3 \cos \theta=\pm 3 \).
- If \( \sin (A-B)=\sin A \cos B-\cos A \sin B \) and \( \cos (A-B)=\cos A \cos B+\sin A \sin B \), find the values of \( \sin 15^{\circ} \) and \( \cos 15^{\circ} \).
- If $sin\theta-cos\theta=0$, then find the value of $sin^{4}\theta+cos^{4}\theta$.
- If \( 3 \cos \theta=1 \), find the value of \( \frac{6 \sin ^{2} \theta+\tan ^{2} \theta}{4 \cos \theta} \)
Kickstart Your Career
Get certified by completing the course
Get Started