If ∠ B and ∠ Q are acute angles such that $Sin B = Sin Q$, then prove that $∠ B = ∠ Q$.


Given:

$Sin B = Sin Q$

To do :

We have to prove that  $∠ B = ∠ Q$.

Solution :

Consider two right triangles ABC and PQR where $sin B = sin Q$.

From the figures,

$Sin B = \frac{AC}{AB}$


and $Sin Q = \frac{PR}{PQ}$

This implies,

$\frac{AC}{AB} =  \frac{PR}{PQ}$

$\frac{AC}{PR} =  \frac{AB}{PQ}$

Let$\frac{AC}{PR} =  \frac{AB}{PQ} = k$

$AC = k(PR)$ and $AB = k(PQ)$

In triangles, ABC and PQR, using the Pythagoras theorem,

$AC^2 + BC^2 = AB^2$ and $QR^2+PR^2=PQ^2$

$BC = \sqrt{(AB^2-AC^2)}$ and $QR = \sqrt{(PQ^2-PR^2)}$

$\frac{BC}{QR} = \frac{ \sqrt{(AB^2-AC^2)}}{\sqrt{(PQ^2-PR^2)}}$

$\frac{BC}{QR} = \frac{ \sqrt{(kPQ)^2-(kPR^2)}}{\sqrt{(PQ^2-PR^2)}}$

$\frac{BC}{QR} = \frac{ \sqrt{k^2 (PQ^2-PR^2)}}{\sqrt{(PQ^2-PR^2)}}$

$\frac{BC}{QR} = \frac{k \sqrt{(PQ^2-PR^2)}}{\sqrt{(PQ^2-PR^2)}}$

$\frac{BC}{QR} = k$

$\frac{AC}{PR} = \frac{AB}{PQ} = k$ and $\frac{BC}{QR} = k$

$\frac{AC}{PR} = \frac{AB}{PQ} = \frac{BC}{QR} $

In triangles ABC and PQR,

$\frac{AC}{PR} = \frac{AB}{PQ} = \frac{BC}{QR} $

Therefore,

$∆ ACB ~ ∆ PRQ$

This implies,

$∠ B = ∠ Q$.

Hence proved.


Updated on: 10-Oct-2022

102 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements