If $a+b = 5$ and $ab =2$, find the value of $a^2+b^2$.
Given:
\( a+b=5 \) and \( a b=2 \)
To do:
We have to find the value of \( (a+b)^{2} \).
Solution:
We know that,
$(a+b)^2=a^2+2ab+b^2$
Therefore,
$a^2+b^2=(a+b)^2-2(ab)$
$=(5)^2-2(2)$
$=25-4$
$=21$
- Related Articles
- If a=3 and b=-1then find the value of$5 ab-2 a^{2}+5 b^{2}$
- If $a + b = 10$ and $ab = 16$, find the value of $a^2 – ab + b^2$ and $a^2 + ab + b^2$.
- If $a=2$ and $b=-2$ find the value of $(i)$. $a^2+b^2$$(ii)$. $a^2+ab+b^2$$(iii)$. $a^{2}-b^2$
- If \( a+b=5 \) and \( a b=2 \), find the value of(a) \( (a+b)^{2} \)(b) \( a^{2}+b^{2} \)
- If a = 5 and b = $-$2 then the find the value of:(a $-$ b)2 $-$ (a $+$ b)2
- If $ab=100$ and $a+b=25$, find the value of $a^2+b^2$.
- If \( a+b=5 \) and \( a b=2 \), find the value of(a) \( (a+b)^{2} \)(b) \( a^{2}+b^{2} \)(c) \( (a-b)^{2} \)
- If $a=2$ and $b=3$, find the value of $ab-a^{2}$.
- If a = 2 and b = 3 , find the value of1. $a + b$. $a^{2} + ab$ 3. $ab - a^{2}$4. $2a - 3b$5. $5a^{2} - 2ab$
- If \( a=2 \) and \( b=3 \), find the value of\( a+b \)\( a^{2}+a b \)\( 2 a-3 b \)\( 5 a^{2}-2 a b \)
- If $a + b + c = 0$ and $a^2 + b^2 + c^2 = 16$, find the value of $ab + bc + ca$.
- If $a^2 + b^2 + c^2 = 16$ and $ab + bc + ca = 10$, find the value of $a + b + c$.
- If $a + b + c = 9$ and $ab + bc + ca = 23$, find the value of $a^2 + b^2 + c^2$.
- If $ab=5$ and $a^{2}+b^{2}= 25$, then what is $(a+b)^{2}=?$.
- If $a+b = 6$ and $ab = 8$, find $a^2+b^2$.
Kickstart Your Career
Get certified by completing the course
Get Started