- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $(a+\frac{1}{a})^2+(a-\frac{1}{a})^2=8$, find the value of $(a^2+\frac{1}{a^2})$.
Given: $(a+\frac{1}{a})^2+(a-\frac{1}{a})^2=8$.
To do: To find the value of $(a^2+\frac{1}{a^2})$.
Solution:
$(a+\frac{1}{a})^2= a^2+\frac{1}{a^2}+2$
$(a-\frac{1}{a})^2=a^2+\frac{1}{a^2}-2$
$\Rightarrow ( a+\frac{1}{a})^2+( a-\frac{1}{a})^2=2( a^2+\frac{1}{a^2})$
Substituting values,
$\Rightarrow 8=2( a^2+\frac{1}{a^2})$
$\therefore (a^2+\frac{1}{a^2})=\frac{8}{2}=4$
Advertisements