- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $alpha, beta$ are the zeroes of $f( x)=px^2-2x+3p$ and $alpha +beta=alphabeta$, then find the value of $p$.
Given: $\alpha , \ \beta$ are zeroes of the polynomial $f( x)=px^2−2x+3p$, and $\alpha+\beta =\alpha \beta$
To do: To find the value of $p$.
Solution: From the given quadratic equation,
$\alpha +\beta=\frac{2}{p}$ and $\alpha \beta =3$
but it is given,
$\alpha +\beta =\alpha \beta$
$\Rightarrow \frac{2}{p}=3$
$\Rightarrow p=\frac{2}{3}$
- Related Articles
- If $alpha$ and $beta$ are zeroes of $x^2-4x+1$, then find the value of $frac{1}{alpha}+frac{1}{beta}-alphabeta$.
- If $alpha$ and $beta$ are zeroes of $p( x)=kx^2+4x+4$, such that $alpha^2+beta^2=24$, find $k$.
- If $alpha, beta$ are the roots of $x^2-px+q=0$, find the value of: $( i). alpha^2+beta^2 ( ii). alpha^3+beta^3$.
- If $alpha$ and $beta$ are the zeroes of a polynomial such that $alpha+beta=-6$ and $alphabeta=5$, then find the polynomial.
- If $alpha , beta$ are the zeroes of a polynomial, such that $alpha+beta=6$ and $alphabeta=4$, then write the polynomial.
- If $alpha+beta=-2$ and $alpha^3+beta^3=-56$, then find the quadratic equation whose roots are $alpha$ and $beta$.
- If $alpha$ and $beta$ are the zeroes of the polynomial $f(x)=x^2−px+q$, then write the polynomial having $frac{1}{alpha}$ and $frac{1}{beta}$ as its zeroes.
- If $alpha$ and $beta$ are the zeroes of the polynomial $ax^2+bx+c$, find the value of $alpha^2+beta^2$.
- If $alpha, beta$ are zeroes of $x^2-6x+k$, what is the value of $k$ if $3alpha+2beta=20$?
- Polynomial ( f(x)=x^{2}-5 x+k ) has zeroes ( alpha ) and ( beta ) such that ( alpha-beta=1 . ) Find the value of ( 4 k ).
- if $alpha$ and $beta$ are zeroes of polynomial $x^{2}-2x-15$, then form a quadratic polynomial whose zeroes are $2alpha$ and $2beta$.
- If ( cos (alpha+beta)=0 ), then ( sin (alpha-beta) ) can be reduced to(A) ( cos beta )(B) ( cos 2 beta )(C) ( sin alpha )(D) ( sin 2 alpha )
- Given $sinalpha=frac{sqrt{3}}{2}$ and $cosbeta=0$, then find the value of $( beta-alpha)$.
- Find $alpha$ and $beta$, if $x + 1$ and $x + 2$ are factors of $x^3 + 3x^2 - 2 alpha x + beta$.
- If $tanalpha=sqrt{3}$ and $tanbeta=frac{1}{sqrt{3}}, 0ltalpha, betalt 90^{o}$, then find the value of $cot( alpha+beta)$.

Advertisements