- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
if $\alpha$ and $\beta$ are zeroes of polynomial $x^{2}-2x-15$, then form a quadratic polynomial whose zeroes are $2\alpha$ and $2\beta$.
Given: $\alpha$ and $\beta$ are zeroes of polynomial $x^{2}-2x-15$.
To do: To form a quadratic polynomial whose zeroes are $2\alpha$ and $2\beta$.
Solution:
As given, $x^{2}-2x-15$
$=x^2-5x+3x-15$
$=x( x-5)+3( x-5)$
$=( x+3)( x-5)$
Let $\alpha=-3$ and $\beta=5$
$\alpha+\beta=-3+5=2$ and $\alpha\beta=-3\times\ 5=-15$
$\therefore$ The polynomial whose zeroes are $2\alpha$ and $2\beta$
$=k( x^2-( 2\alpha+2\beta)x+2\alpha2\beta)$
$=k( x^2-2( \alpha+\beta)x+4\alpha\beta)$
$=k( x^2-2\times( -2)x+4\times( -15))$
$=k( x^2+4x-60)$
- Related Articles
- If $\alpha$ and $\beta$ are zeroes of a quadratic polynomial $4x^{2}+4x+1=0$, then form a quadratic polynomial whose zeroes are $2\alpha$ and $2\beta$.
- If $\alpha ,\ \beta$ are the zeroes of a polynomial, such that $\alpha+\beta=6$ and $\alpha\beta=4$, then write the polynomial.
- If $\alpha$ and $\beta$ are the zeroes of a polynomial such that $\alpha+\beta=-6$ and $\alpha\beta=5$, then find the polynomial.
- If $\alpha$ and $\beta$ are the zeroes of the polynomial $ax^2+bx+c$, find the value of $\alpha^2+\beta^2$.
- If $\alpha,\ \beta$ are the zeroes of $f( x)=px^2-2x+3p$ and $\alpha +\beta=\alpha\beta$, then find the value of $p$.
- If $\alpha$ and $\beta$ are the zeroes of the polynomial $f(x)=x^2−px+q$, then write the polynomial having $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ as its zeroes.
- If $\alpha$ and $\beta$ are zeroes of $x^2-4x+1$, then find the value of $\frac{1}{\alpha}+\frac{1}{\beta}-\alpha\beta$.
- $\alpha$ and $\beta$ are the zeros of the polynomial $x^2+4x+3$. Then write the polynomial whose zeros are $1+\frac{\alpha}{\beta}$ and $1+\frac{\beta}{\alpha}$.​
- If $\alpha+\beta=-2$ and $\alpha^3+\beta^3=-56$, then find the quadratic equation whose roots are $\alpha$ and $\beta$.
- If $\alpha$ and $\beta$ are zeroes of $p( x)=kx^2+4x+4$, such that $\alpha^2+\beta^2=24$, find $k$.
- If $\alpha,\ \beta$ are zeroes of $x^2-6x+k$, what is the value of $k$ if $3\alpha+2\beta=20$?
- Polynomial \( f(x)=x^{2}-5 x+k \) has zeroes \( \alpha \) and \( \beta \) such that \( \alpha-\beta=1 . \) Find the value of \( 4 k \).
- Find $\alpha$ and $\beta$, if $x + 1$ and $x + 2$ are factors of $x^3 + 3x^2 - 2 \alpha x + \beta$.
- If $\alpha,\ \beta$ are the roots of $x^2-px+q=0$, find the value of: $( i). \alpha^2+\beta^2\ ( ii). \alpha^3+\beta^3$.
- Form a quadratic polynomial whose zeroes are $3+\sqrt{2}$ and $ 3-\sqrt{2}$.

Advertisements