If a line intersects two concentric circles (circles with the same centre) with centre $ \mathrm{O} $ at $ \mathrm{A}, \mathrm{B}, \mathrm{C} $ and D, prove that $ \mathrm{AB}=\mathrm{CD} $.(see figure below) "
Given:
$A,B$ and $C$ are three points on a circle with centre $O$ such that $\angle BOC = 30^o$ and $\angle AOB = 60^o$.
$D$ is a point on the circle other than the arc $ABC$.
To do:
We have to find $\angle ADC$.
Solution:
Draw a line segment from $O$ to $AD$ such that $OP \perp AD$.
$OP \perp AD$
This implies,
$OP$ bisects $AD$
Therefore,
$AP = PD$..........(i)
$OP \perp BC$
This implies,
$OP$ bisects $BC$.
Therefore,
$BP = PC$............(ii)
Subtracting (ii) from (i), we get,
$AP-BP = PD-PC$
Therefore,
$AB = CD$
Hence proved.
Related Articles Two circles intersect at two points \( B \) and \( C \). Through \( \mathrm{B} \), two line segments \( \mathrm{ABD} \) and \( \mathrm{PBQ} \) are drawn to intersect the circles at \( A, D \) and \( P \), \( Q \) respectively (see in figure below). Prove that \( \angle \mathrm{ACP}=\angle \mathrm{QCD} \)."\n
With the same centre \( O \), draw two circles of radii \( 4 \mathrm{~cm} \) and \( 2.5 \mathrm{~cm} \).
In figure below, \( \mathrm{ABC} \) and \( \mathrm{ABD} \) are two triangles on the same base \( \mathrm{AB} \). If line- segment \( \mathrm{CD} \) is bisected by \( \mathrm{AB} \) at \( \mathrm{O} \), show that \( \operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD}) \)."\n
In the figure two straight lines \( \mathrm{AB} \& \mathrm{CD} \) intersect at \( \mathrm{O} \). If \( \angle \mathrm{COT}=60^{\circ} \), find \( \mathrm{a}, \mathrm{b}, \mathrm{c} \)."\n
Two congruent circles intersect each other at points \( \mathrm{A} \) and \( \mathrm{B} \). Through \( \mathrm{A} \) any line segment \( \mathrm{PAQ} \) is drawn so that \( \mathrm{P}, \mathrm{Q} \) lie on the two circles. Prove that \( \mathrm{BP}=\mathrm{BQ} \).
\( \mathrm{ABCD} \) is a trapezium with \( \mathrm{AB} \| \mathrm{DC} \). A line parallel to \( \mathrm{AC} \) intersects \( \mathrm{AB} \) at \( \mathrm{X} \) and \( \mathrm{BC} \) at Y. Prove that ar \( (\mathrm{ADX})=\operatorname{ar}(\mathrm{ACY}) \).[Hint: Join CX.]
In figure below, if \( \mathrm{AB} \| \mathrm{DC} \) and \( \mathrm{AC} \) and \( \mathrm{PQ} \) intersect each other at the point \( \mathrm{O} \), prove that \( \mathrm{OA} \cdot \mathrm{CQ}=\mathrm{OC} \cdot \mathrm{AP} \)."
In figure below, \( l \| \mathrm{m} \) and line segments \( \mathrm{AB}, \mathrm{CD} \) and \( \mathrm{EF} \) are concurrent at point \( \mathrm{P} \).Prove that \( \frac{\mathrm{AE}}{\mathrm{BF}}=\frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{CE}}{\mathrm{FD}} \)."
\( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{CD} \) and \( \mathrm{AD}=\mathrm{BC} \) (see below figure). Show that(i) \( \angle \mathrm{A}=\angle \mathrm{B} \)(ii) \( \angle \mathrm{C}=\angle \mathrm{D} \)(iii) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{BAD} \)(iv) diagonal \( \mathrm{AC}= \) diagonal \( \mathrm{BD} \)[Hint: Extend \( \mathrm{AB} \) and draw a line through \( \mathrm{C} \) parallel to \( \mathrm{DA} \) intersecting \( \mathrm{AB} \) produced at E.]"\n
In figure below, if \( \mathrm{PQRS} \) is a parallelogram and \( \mathrm{AB} \| \mathrm{PS} \), then prove that \( \mathrm{OC} \| \mathrm{SR} \)."
In Fig. 5.10, if \( \mathrm{AC}=\mathrm{BD} \), then prove that \( \mathrm{AB}=\mathrm{CD} \)."\n
\( \mathrm{AD} \) and \( \mathrm{BC} \) are equal perpendiculars to a line segment \( \mathrm{AB} \) (see Fig. 7.18). Show that \( \mathrm{CD} \) bisects \( \mathrm{AB} \)."\n
Find \( \mathrm{x} \) if \( \mathrm{AB}\|\mathrm{CD}\| \mathrm{EF} \)."\n
ABCD is a parallelogram. The circle through \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) intersect \( \mathrm{CD} \) (produced if necessary) at \( \mathrm{E} \). Prove that \( \mathrm{AE}=\mathrm{AD} \).
\( \mathrm{AD} \) and \( \mathrm{BC} \) are equal perpendiculars to a line segment \( \mathrm{AB} \) (See the given figure). Show that CD bisects AB."\n
Kickstart Your Career
Get certified by completing the course
Get Started