If $ A, B, C $ are the interior angles of a $ \triangle A B C $, show that:$ \tan \frac{B+C}{2}=\cot \frac{A}{2} $
Given:
\( A, B, C \), are the interior angles of a triangle \( A B C \).
To do:
We have to prove that \( \tan \left(\frac{B+C}{2}\right)=\cot \frac{A}{2} \).
Solution:
We know that,
$tan\ (90^{\circ}- \theta) = cot\ \theta$
Sum of the angles in a triangle is $180^{\circ}$.
This implies,
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \frac{\angle A+\angle B+\angle C}{2}=\frac{180^{\circ}}{2}$
$\Rightarrow \frac{\angle A}{2}+ \frac{\angle B}{2}+ \frac{\angle C}{2}=90^{\circ}$
Therefore,
$\tan \left(\frac{B+C}{2}\right)=\tan (\frac{B}{2}+\frac{C}{2})$
$=\tan (90^{\circ}-\frac{A}{2})$
$=\cot \frac{A}{2}$
Hence proved.
- Related Articles
- If \( A, B, C \), are the interior angles of a triangle \( A B C \), prove that\( \tan \left(\frac{C+A}{2}\right)=\cot \frac{B}{2} \)
- If \( A, B, C \) are the interior angles of a \( \triangle A B C \), show that:\( \cos \frac{B+C}{2}=\sin \frac{A}{2} \)
- If $A, B$ and $C$ are interior angles of a triangle $ABC$, then show that: $sin\ (\frac{B+C}{2}) = cos\ \frac{A}{2}$
- If \( A, B, C \), are the interior angles of a triangle \( A B C \), prove that\( \sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2} \)
- In $\vartriangle ABC$, if $cot \frac{A}{2},\ cot \frac{B}{2},\ cot \frac{C}{2}$ are in A.P. Then show that $a,\ b,\ c$ are in A.P.  
- If \( A, B, C \), are the interior angles of a triangle \( A B C \), prove thatIf \( \angle A=90^{\circ} \), then find the value of \( \tan \left(\frac{B+C}{2}\right) \).
- If $2^{a}=3^{b}=6^{c}$ then show that $ c=\frac{a b}{a+b} $
- Prove that:\( \frac{\cot A+\tan B}{\cot B+\tan A}=\cot A \tan B \)
- If \( A \) and \( B \) are acute angles such that \( \tan A=\frac{1}{2}, \tan B=\frac{1}{3} \) and \( \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \), find \( A+B \).
- Prove that:\( \frac{\tan A+\tan B}{\cot A+\cot B}=\tan A \tan B \)
- Show that:\( \left(\frac{x^{a^{2}+b^{2}}}{x^{a b}}\right)^{a+b}\left(\frac{x^{b^{2}+c^{2}}}{x^{b c}}\right)^{b+c}\left(\frac{x^{c^{2}+a^{2}}}{x^{a c}}\right)^{a+c}= x^{2\left(a^{3}+b^{3}+c^{3}\right)} \)
- In an acute angle triangle ABC, $sin\ (A + B - C) = \frac{1}{2}$, $cot\ (A - B + C) = 0$ and $cos (B + C - A) =\frac{1}{2}$. What are the values of A, B, and C?
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1 \)
- Prove that:\( \left(\frac{x^{a}}{x^{-b}}\right)^{a^{2}-a b+b^{2}} \times\left(\frac{x^{b}}{x^{-c}}\right)^{b^{2}-b c+c^{2}} \times\left(\frac{x^{c}}{x^{-a}}\right)^{c^{2}-c a+a^{2}}=1 \)
- If \( x=a \sec \theta \cos \phi, y=b \sec \theta \sin \phi \) and \( z=c \tan \theta \), show that \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \)
Kickstart Your Career
Get certified by completing the course
Get Started