If $ A, B, C $, are the interior angles of a triangle $ A B C $, prove that
$ \sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2} $
Given:
\( A, B, C \), are the interior angles of a triangle \( A B C \).
To do:
We have to prove that \( \sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2} \).
Solution:
We know that,
$sin\ (90^{\circ}- \theta) = cos\ \theta$
Sum of the angles in a triangle is $180^{\circ}$.
This implies,
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \frac{\angle A+\angle B+\angle C}{2}=\frac{180^{\circ}}{2}$
$\Rightarrow \frac{\angle A}{2}+ \frac{\angle B}{2}+ \frac{\angle C}{2}=90^{\circ}$
Therefore,
$\sin \left(\frac{B+C}{2}\right)=\sin (\frac{B}{2}+\frac{C}{2})$
$=\sin (90^{\circ}-\frac{A}{2})$
$=\cos \frac{A}{2}$
Hence proved.
- Related Articles
- If \( A, B, C \) are the interior angles of a \( \triangle A B C \), show that:\( \cos \frac{B+C}{2}=\sin \frac{A}{2} \)
- If \( A, B, C \), are the interior angles of a triangle \( A B C \), prove that\( \tan \left(\frac{C+A}{2}\right)=\cot \frac{B}{2} \)
- If $A, B$ and $C$ are interior angles of a triangle $ABC$, then show that: $sin\ (\frac{B+C}{2}) = cos\ \frac{A}{2}$
- Prove that \( \sin \left(C+\frac{A+B}{2}\right)=\sin \frac{A+B}{2} \)
- If \( A, B, C \) are the interior angles of a \( \triangle A B C \), show that:\( \tan \frac{B+C}{2}=\cot \frac{A}{2} \)
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1 \)
- Prove that:\( \left(\frac{x^{a}}{x^{-b}}\right)^{a^{2}-a b+b^{2}} \times\left(\frac{x^{b}}{x^{-c}}\right)^{b^{2}-b c+c^{2}} \times\left(\frac{x^{c}}{x^{-a}}\right)^{c^{2}-c a+a^{2}}=1 \)
- If \( A, B, C \), are the interior angles of a triangle \( A B C \), prove thatIf \( \angle A=90^{\circ} \), then find the value of \( \tan \left(\frac{B+C}{2}\right) \).
- If \( tan \theta = \frac{a}{b} \), prove that\( \frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \).
- Show that:\( \left(\frac{x^{a^{2}+b^{2}}}{x^{a b}}\right)^{a+b}\left(\frac{x^{b^{2}+c^{2}}}{x^{b c}}\right)^{b+c}\left(\frac{x^{c^{2}+a^{2}}}{x^{a c}}\right)^{a+c}= x^{2\left(a^{3}+b^{3}+c^{3}\right)} \)
- If \( x=a \cos ^{3} \theta, y=b \sin ^{3} \theta \), prove that \( \left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1 \)
- Prove that:\( \sin ^{2} A \cos ^{2} B-\cos ^{2} A \sin ^{2} B=\sin ^{2} A-\sin ^{2} B \)
- If $\frac{x}{a}cos\theta+\frac{y}{b}sin\theta=1$ and $\frac{x}{a}sin\theta-\frac{y}{b}cos\theta=1$, prove that $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$.
- Given that $sin\ \theta = \frac{a}{b}$, then $cos\ \theta$ is equal to(A) \( \frac{b}{\sqrt{b^{2}-a^{2}}} \)(B) \( \frac{b}{a} \)(C) \( \frac{\sqrt{b^{2}-a^{2}}}{b} \)(D) \( \frac{a}{\sqrt{b^{2}-a^{2}}} \)
- Evaluate\( \left(\frac{2}{5} a^{2} b\right) \times\left(-15 b^{2} a c\right) \times\left(\frac{-1}{2}\right) c^{2} \)
Kickstart Your Career
Get certified by completing the course
Get Started