If $2^{a}=3^{b}=6^{c}$ then show that $ c=\frac{a b}{a+b} $
Given: $2^{a}=3^{b}=6^{c}$
To find: Show that $ c=\frac{a b}{a+b} $
Solution:
Let $2^a=3^b=6^c=k$
So,$2^a=d$
⇒$k^{\frac{1}{a}}=2$---------------[i].
and $3^b=d$
⇒$k{\frac{1}{b}}=3$----------------[ii]
.
and also $6^c=k$
⇒$k{\frac{1}{c}}=6$-----------------[iii].
we know that $6=2\times3$
Now substituting , 2,3 and 6
$d^{\frac{1}{a}+\frac{1}{b}} = d^{\frac{1}{c}}$
So, $\frac{1}{c} = \frac{1}{a} + \frac{1}{b}$
⇒$\frac{1}{c} = \frac{b+a}{ ab}$
⇒$c=\frac{ab }{ a+b}$ Hence proved
- Related Articles
- If \( a+2 b=5; \) then show that : \( a^{3}+8 b^{3}+30 a b=125 \).
- Show that:\( \left(\frac{x^{a^{2}+b^{2}}}{x^{a b}}\right)^{a+b}\left(\frac{x^{b^{2}+c^{2}}}{x^{b c}}\right)^{b+c}\left(\frac{x^{c^{2}+a^{2}}}{x^{a c}}\right)^{a+c}= x^{2\left(a^{3}+b^{3}+c^{3}\right)} \)
- If $A, B$ and $C$ are interior angles of a triangle $ABC$, then show that: $sin\ (\frac{B+C}{2}) = cos\ \frac{A}{2}$
- Show that:\( \left(\frac{3^{a}}{3^{b}}\right)^{a+b}\left(\frac{3^{b}}{3^{c}}\right)^{b+c}\left(\frac{3^{c}}{3^{a}}\right)^{c+a}=1 \)
- If \( A, B, C \) are the interior angles of a \( \triangle A B C \), show that:\( \tan \frac{B+C}{2}=\cot \frac{A}{2} \)
- If \( A, B, C \) are the interior angles of a \( \triangle A B C \), show that:\( \cos \frac{B+C}{2}=\sin \frac{A}{2} \)
- If \( a^{x}=b^{y}=c^{z} \) and \( b^{2}=a c \), then show that \( y=\frac{2 z x}{z+x} \).
- Given that $sin\ \theta = \frac{a}{b}$, then $cos\ \theta$ is equal to(A) \( \frac{b}{\sqrt{b^{2}-a^{2}}} \)(B) \( \frac{b}{a} \)(C) \( \frac{\sqrt{b^{2}-a^{2}}}{b} \)(D) \( \frac{a}{\sqrt{b^{2}-a^{2}}} \)
- Suppose $a,\ b,\ c$ are in AP, then prove that $b=\frac{a+c}{2}$.
- In $\vartriangle ABC$, if $cot \frac{A}{2},\ cot \frac{B}{2},\ cot \frac{C}{2}$ are in A.P. Then show that $a,\ b,\ c$ are in A.P.  
- If \( a=2, b=3 \) and \( c=4, \) then find the value of \( 3 a-b+c \).
- If \( a b c=1 \), show that \( \frac{1}{1+a+b^{-1}}+\frac{1}{1+b+c^{-1}}+\frac{1}{1+c+a^{-1}}=1 \)
- Factorize:\( 6 a b-b^{2}+12 a c-2 b c \)
- If A is 50 percent of $B$, then $B$ is what percent of $( A+B) ?$A. $40$ %B. $66\frac{2}{3}$ %C. $33\frac{1}{3}$ %D. $75$ %
- Show that \( \frac{a \sqrt{b}-b \sqrt{a}}{a \sqrt{b}+b \sqrt{a}}=\frac{1}{a-b}(a+b-2 \sqrt{a b}) \)
Kickstart Your Career
Get certified by completing the course
Get Started