- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $(0, -3)$ and $(0, 3)$ are the two vertices of an equilateral triangle, find the coordinates of its third vertex.
Given:
$(0, -3)$ and $(0, 3)$ are the two vertices of an equilateral triangle.
To do:
We have to find the coordinates of its third vertex.
Solution:
Let $A (0, -3)$ and $B (0, 3)$ be two vertices of the equilateral triangle and the coordinates of the third vertex be $C (x, y)$.
This implies,
$AB=BC=CA$
We know that,
The distance between two points \( \mathrm{A}\left(x_{1}, y_{1}\right) \) and \( \mathrm{B}\left(x_{2}, y_{2}\right) \) is \( \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \).
Therefore,
\( \mathrm{AC}=\mathrm{AB} \)
\( \Rightarrow (x-0)^{2}+(y+3)^{2}=(0-0)^{2}+(3+3)^{2} \)
\( \Rightarrow x^{2}+(y+3)^{2}=0+(6)^{2}=36 \)
\( \Rightarrow x^{2}+y^{2}+6 y+9=36 \)
\( \Rightarrow x^{2}+y^{2}+6 y=36-9=27 \)......(i)
\( \mathrm{BC}=\mathrm{AB} \)
\( \Rightarrow (x-0)^{2}+(y-3)^{2}=36 \)
\( \Rightarrow x^{2}+y^{2}+9-6 y=36 \)
\( \Rightarrow x^{2}+y^{2}-6 y=36-9=27 \)........(ii)
From (i) and (ii),
\( x^{2}+y^{2}+6 y=x^{2}+y^{2}-6 y \)
\( x^{2}+y^{2}+6 y-x^{2}-y^{2}+6 y=0 \)
\( 12 y=0 \)
\( \Rightarrow y=0 \)
From (i),
\( x^{2}+y^{2}+6 y=27 \)
\( x^{2}+0+0=27 \)
\( x=\pm \sqrt{9 \times 3} \)
\( =\pm 3 \sqrt{3} \)
\( x=\pm 3 \sqrt{3} \) and \( y=0 \).
Therefore, the coordinates of the third point is \( (3 \sqrt{3}, 0) \) or \( (-3 \sqrt{3}, 0) \).