- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# How many litres of milk can a hemispherical bowl of diameter $ 10.5 \mathrm{~cm} $ hold?

Given:

The diameter of a hemispherical bowl is \( 10.5 \mathrm{~cm} \).

To do:

We have to find the volume of water it can hold.

Solution:

Diameter of the hemispherical bowl $= 10.5\ cm$

This implies,

Radius of the hemispherical bowl $r = \frac{10.5}{2}\ cm$

$= 5.25\ cm$

Therefore,

Volume of the hemispherical bowl $=\frac{2}{3} \pi r^{3}$

$=\frac{2}{3} \times \frac{22}{7} \times 5.25 \times 5.25 \times 5.25$

$=303.1875 \mathrm{~cm}^{3}$

We know that,

$1000 \mathrm{~cm}^{3}=1 \mathrm{~L}$

$1 \mathrm{~cm}^{3}=\frac{1}{1000} \mathrm{~L}$

This implies,

Volume $=303.1875 \mathrm{~cm}^{3}$

$=\frac{303.1875}{1000} \mathrm{~L}$

$=0.303 \mathrm{~L}$

The hemispherical bowl can hold $0.303\ L$ of milk.

Advertisements