How many 3 digit numbers can you make using digits 2,4 and 0? (using each digit only once)
(1) 6
(2) 4
(3) 3
(4) 5
Given: The digits 2, 4, and 0.
To find: We have to find the number of three-digit numbers that can be made with 2, 4, 0 by using each digit once.
Solution:
First let's write down all the three-digit numbers using 2, 4, 0 only once:
240, 204, 024, 042, 420 and 402.
So, a total of 6 cases possible but, we know that 024 and 042 are not actually three-digit numbers they are two-digit numbers.
Therefore, all the four possible three-digit numbers using 2, 4, 0 only once are:
240, 204, 420 and 402.
- Related Articles
- Find the difference between the greatest and the least 5 digit numbers formed by using the digits 6, 2 ,7, 4 ,3 each only once.
- How many three-digit numbers can you make with 0,5,9 by using each digit once?
- Following data gives the number of children in 41 families:$1, 2, 6, 5, 1, 5, 1, 3, 2, 6, 2, 3, 4, 2, 0, 0, 4, 4, 3, 2, 2, 0, 0, 1, 2, 2, 4, 3, 2, 1, 0, 5, 1, 2, 4, 3, 4, 1, 6, 2, 2.$Represent it in the form of a frequency distribution.
- Use the given digits without repetition and make the greatest and smallest 4-digit numbers.a) 2, 8, 7, 4b) 9, 7, 4, 1c) 4, 7, 5, 0d) 1, 7, 6, 2e) 5, 4, 0, 3
- Find the difference between the greatest and the least 5-digit numbers formed using digits 6,2,7,4,3 each only once.
- Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer.(i) $(-1, -2), (1, 0), (-1, 2), (-3, 0)$(ii) $(-3, 5), (3, 1), (0, 3), (-1, -4)$(iii) $(4, 5), (7, 6), (4, 3), (1, 2)$
- Observe the following pattern\( (1 \times 2)+(2 \times 3)=\frac{2 \times 3 \times 4}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)=\frac{3 \times 4 \times 5}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)=\frac{4 \times 5 \times 6}{3} \)and find the value of\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)+(5 \times 6) \)
- Find the number from each of the following expanded forms:$(a)$. $8\times10^4+6\times10^3+0\times10^2+4\times10^1+5\times10^0$$(b)$. $4\times10^4+5\times10^3+3\times10^2+2\times10^0$$(c)$. $3\times10^4+7\times10^2+5\times10^0$$(d)$. $9\times10^5+2\times10^2+3\times10^1$
- Simplify (i) +7 + 1 - 3 + 4 -2 - 5 + 7 - 2 + 1 -6 + 5(ii)+2 - 3 + 2 -5 + 1 - 3 + 8 - 4 + 3
- Which is greater in each of the following:$(i)$. $\frac{2}{3},\ \frac{5}{2}$$(ii)$. $-\frac{5}{6},\ -\frac{4}{3}$$(iii)$. $-\frac{3}{4},\ \frac{2}{-3}$$(iv)$. $-\frac{1}{4},\ \frac{1}{4}$$(v)$. $-3\frac{2}{7\ },\ -3\frac{4}{5}$
- Make the greatest and the smallest $4$-digit numbers by using any digit twice: $1,\ 8,\ 7$.
- Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- Draw this using number line:(i) ($-$3) $+$ 2 $+$ ($-$5)(ii) ($-$4) $+$ 6 $+$ ($-$3)
- Explanation :Possible three digit numbers using 0, 5, 9 only once are: 509, 590, 905, 950.
- The number of pairs of two digit square numbers, the sum or difference of which are also square numbers is(1) 0(2) 1(3) 2(4) 3
Kickstart Your Career
Get certified by completing the course
Get Started