- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Given that: $ (1+\cos \alpha)(1+\cos \beta)(1+\cos \gamma)=(1-\cos \alpha)(1-\cos \beta)(1-\cos \gamma) $Show that one of the values of each member of this equality is $ \sin \alpha \sin \beta \sin \gamma $
Given:
\( (1+\cos \alpha)(1+\cos \beta)(1+\cos \gamma)=(1-\cos \alpha)(1-\cos \beta)(1-\cos \gamma) \)
To do:
We have to show that one of the values of each member of the given equality is \( \sin \alpha \sin \beta \sin \gamma \).
Solution:
$(1+\cos \alpha)(1+\cos \beta)(1+\cos \gamma)=(1-\cos \alpha)(1-\cos \beta)(1-\cos \gamma)$
$\Rightarrow \frac{(1+\cos \alpha)(1+\cos \beta)(1+\cos \gamma)}{(1-\cos \alpha)(1-\cos \beta)(1-\cos \gamma)}=1$
$\Rightarrow (\frac{1+\cos \alpha}{1-\cos \alpha}) (\frac{1+\cos \beta}{1-\cos \beta}) (\frac{1+\cos \gamma}{1-\cos \gamma})=1$
$\Rightarrow \frac{(1+\cos \alpha)(1+\cos \alpha)}{(1-\cos \alpha)(1+\cos \alpha)} \frac{(1+\cos \beta)(1+\cos \beta)}{(1-\cos \beta)(1+\cos \beta)}\frac{(1+\cos \gamma)(1+\cos \gamma)}{(1-\cos \gamma)(1+\cos \gamma)}=1$
$\Rightarrow \frac{(1+\cos \alpha)^{2}}{1-\cos ^{2} \alpha} \frac{(1+\cos \beta)^{2}}{1-\cos ^{2} \beta} \frac{(1+\cos \gamma)^{2}}{1-\cos ^{2} \gamma}=1$
$\Rightarrow \frac{(1+\cos \alpha)^{2}}{\sin ^{2} \alpha} \frac{(1+\cos \beta)^{2}}{\sin ^{2} \beta} \frac{(1+\cos \gamma)^{2}}{\sin ^{2} \gamma}=1$
$\Rightarrow (1+\cos \alpha)^{2} (1+\cos \beta)^{2} (1+\cos \gamma)^{2}=\sin ^{2} \alpha \sin ^{2} \beta \sin ^{2} \gamma$
$\Rightarrow (1+\cos \alpha)(1+\cos \beta)(1+\cos \gamma)=\sin \alpha \sin \beta \sin \gamma$
Hence, one of the values of each member of the given equality is \( \sin \alpha \sin \beta \sin \gamma \).
- Related Articles
- If \( \cos (\alpha+\beta)=0 \), then \( \sin (\alpha-\beta) \) can be reduced to(A) \( \cos \beta \)(B) \( \cos 2 \beta \)(C) \( \sin \alpha \)(D) \( \sin 2 \alpha \)
- If $\frac{cos\alpha}{cos\beta}=m$ and $\frac{cos\alpha}{sin\beta}=n$, then show that $( m^{2}+n^{2})cos^{2}\beta=n^{2}$.
- Prove that:\( \frac{1+\cos \theta+\sin \theta}{1+\cos \theta-\sin \theta}=\frac{1+\sin \theta}{\cos \theta} \)
- Given $sin\alpha=\frac{\sqrt{3}}{2}$ and $cos\beta=0$, then find the value of $( \beta-\alpha)$.
- Given that \( \sin \alpha=\frac{1}{2} \) and \( \cos \beta=\frac{1}{2} \), then the value of \( (\alpha+\beta) \) is(A) \( 0^{\circ} \)(B) \( 30^{\circ} \)(C) \( 60^{\circ} \)(D) \( 90^{\circ} \)
- Prove the following identities:\( \left(\frac{1+\sin \theta-\cos \theta}{1+\sin \theta+\cos \theta}\right)^{2}=\frac{1-\cos \theta}{1+\cos \theta} \)
- Prove that:\( \frac{1+\cos \theta-\sin ^{2} \theta}{\sin \theta(1+\cos \theta)}=\cot \theta \)
- If \( \cos A+\cos ^{2} A=1 \), prove that \( \sin ^{2} A+\sin ^{4} A=1 \)
- Prove that:\( \frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta} \)
- Prove that:$\frac{cos\ A\ −\ sin\ A\ +\ 1}{cos\ A\ +\ sin\ A\ −\ 1} \ =\ cosec\ A\ +\ cot\ A$
- Find the distance between the following pair of points:$(a sin \alpha, -b cos \alpha)$ and $(-a cos \alpha, -b sin \alpha)$
- If \( \cos 9 \alpha=\sin \alpha \) and \( 9 \alpha
- Prove that:\( \frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}=\sin A+\cos A \)
- Prove that:\( \frac{\cos \theta-\sin \theta+1}{\cos \theta+\sin \theta-1} =\operatorname{cosec} \theta+\cot \theta \)
- If $cos \theta_{1} +cos \theta_{2}+cos \theta_{3}+cos \theta_{4}+cos \theta_{5} = 5$, find the value of $sin \theta_{1} +sin \theta_{2}+sin \theta_{3}+sin \theta_{4}+sin \theta_{5}$.
