- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Given $sin\alpha=\frac{\sqrt{3}}{2}$ and $cos\beta=0$, then find the value of $( \beta-\alpha)$.
Given: $sin\alpha=\frac{\sqrt{3}}{2}$ and $cos\beta=0$.
To do: To find the value of $( \beta-\alpha)$.
Solution:
As given,
$sin\alpha=\frac{\sqrt{3}}{2}$
$\Rightarrow \alpha=60^o$
And $cos\beta=0$
$\Rightarrow \beta=90^o$
$\therefore \beta-\alpha=90^o-60^o$
$\Rightarrow \beta-\alpha=30^o$
Thus, the value of $( \beta-\alpha)$ is $30^o$.
- Related Articles
- If \( \cos (\alpha+\beta)=0 \), then \( \sin (\alpha-\beta) \) can be reduced to(A) \( \cos \beta \)(B) \( \cos 2 \beta \)(C) \( \sin \alpha \)(D) \( \sin 2 \alpha \)
- If $tan\alpha=\sqrt{3}$ and $tan\beta=\frac{1}{\sqrt{3}},\ 0\lt\alpha,\ \beta\lt 90^{o}$, then find the value of $cot( \alpha+\beta)$.
- If $\frac{cos\alpha}{cos\beta}=m$ and $\frac{cos\alpha}{sin\beta}=n$, then show that $( m^{2}+n^{2})cos^{2}\beta=n^{2}$.
- If $\alpha,\ \beta$ are the zeroes of $f( x)=px^2-2x+3p$ and $\alpha +\beta=\alpha\beta$, then find the value of $p$.
- If $\alpha$ and $\beta$ are zeroes of $x^2-4x+1$, then find the value of $\frac{1}{\alpha}+\frac{1}{\beta}-\alpha\beta$.
- If $\alpha+\beta=-2$ and $\alpha^3+\beta^3=-56$, then find the quadratic equation whose roots are $\alpha$ and $\beta$.
- If $\alpha,\ \beta$ are the roots of $x^2-px+q=0$, find the value of: $( i). \alpha^2+\beta^2\ ( ii). \alpha^3+\beta^3$.
- Given that \( \sin \alpha=\frac{1}{2} \) and \( \cos \beta=\frac{1}{2} \), then the value of \( (\alpha+\beta) \) is(A) \( 0^{\circ} \)(B) \( 30^{\circ} \)(C) \( 60^{\circ} \)(D) \( 90^{\circ} \)
- Given that: \( (1+\cos \alpha)(1+\cos \beta)(1+\cos \gamma)=(1-\cos \alpha)(1-\cos \beta)(1-\cos \gamma) \)Show that one of the values of each member of this equality is \( \sin \alpha \sin \beta \sin \gamma \)
- $\alpha$ and $\beta$ are the zeros of the polynomial $x^2+4x+3$. Then write the polynomial whose zeros are $1+\frac{\alpha}{\beta}$ and $1+\frac{\beta}{\alpha}$.​
- If $\alpha$ and $\beta$ are zeroes of $p( x)=kx^2+4x+4$, such that $\alpha^2+\beta^2=24$, find $k$.
- If $\alpha$ and $\beta$ are the zeroes of a polynomial such that $\alpha+\beta=-6$ and $\alpha\beta=5$, then find the polynomial.
- If $\alpha ,\ \beta$ are the zeroes of a polynomial, such that $\alpha+\beta=6$ and $\alpha\beta=4$, then write the polynomial.
- If $\alpha$ and $\beta$ are the zeroes of the polynomial $ax^2+bx+c$, find the value of $\alpha^2+\beta^2$.
- Find $\alpha$ and $\beta$, if $x + 1$ and $x + 2$ are factors of $x^3 + 3x^2 - 2 \alpha x + \beta$.

Advertisements