- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
From the choices given below, choose the equation whose graphs are given in Fig. $ 4.6 $ and Fig. 4.7.
For Fig. 4. 6

(i) $ y=x $
(ii) $ x+y=0 $
(iii) $ y=2 x $
(iv) $ 2+3 y=7 x $
For Fig. $ 4.7 $

(i) $ y=x+2 $
(ii) $ y=x-2 $
(iii) $ y=-x+2 $
(iv) $ x+2 y=6 $"
To do:
We have to find the equations whose graphs are given in fig $4.6$ and fig $4.6$.
Solution:
For Fig $4.6$
Let us substitute the given points in each of the equations in the options.
The given points should satisfy the equation whose graph is given in the figure.
Therefore,
(i) $(-1, 1)$
$y=x$
$-1≠1$
(ii) $(-1, 1)$
$x+y=0$
$-1+1=0$
$0+0=0$
$1-1=0$
Therefore, $(-1, 1)$ and $(1, -1)$ satisfy the equation $x+y=0$.
(iii) $(-1, 1)$
$y=2x$
$1=2(-1)$
$1≠-2$
(iv) $(-1, 1)$
$2+3y=7x$
$2+3(1)=7(-1)$
$2+3=-7$
$5≠-7$
Hence, the equation whose graph is given in the figure $4.6$ is $x+y=0$.
For Fig $4.7$
Let us substitute the given points in each of the equations in the options.
The given points should satisfy the equation whose graph is given in the figure.
Therefore,
(i) $(-1, 3)$
$y=x+2$
$3≠-1+2$
(ii) $(-1, 3)$
$y=x-2$
$3≠-1-2$
(iii) $(-1, 3)$
$y=-x+2$
$-x+2=-(-1)+2$
$=1+2$
$=3$
$(2, 0)$
$y=-x+2$
$-x+2=-2+2$
$=0$
$=y$
Therefore, $(-1, 3)$ and $(2, 0)$ satisfy the equation $y=-x+2$.
(iv) $(-1, 3)$
$x+2y=6$
$x+2y=-1+2(3)$
$=-1+6$
$=5$
$≠6$
Hence, the equation whose graph is given in the figure $4.7$ is $y=-x+2$.
- Related Articles
- Verify : (i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
- The reduced form of $36 x^{2}-81 y^{2}$ isi$(6 x+9 y)(6 x-9 y) $ii$(6 x+9 y)(4 x-5) $iii.$(9 x+6 y)(9 x-6 y)$iv. $(9 y-6 x)(9 y+6 x) $
- If $x^2 + y^2 = 29$ and $xy = 2$, find the value of(i) $x + y$(ii) $x - y$(iii) $x^4 + y^4$
- Factorise the following using appropriate identities:(i) \( 9 x^{2}+6 x y+y^{2} \)(ii) \( 4 y^{2}-4 y+1 \)(iii) \( x^{2}-\frac{y^{2}}{100} \)
- Factorise:(i) \( x^{3}-2 x^{2}-x+2 \)(ii) \( x^{3}-3 x^{2}-9 x-5 \)(iii) \( x^{3}+13 x^{2}+32 x+20 \)(iv) \( 2 y^{3}+y^{2}-2 y-1 \)
- Factorize:\( x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3} \)
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Draw the graph of each of the following linear equations in two variables:(i) \( x+y=4 \)(ii) \( x-y=2 \)(iii) \( y=3 x \)(iv) \( 3=2 x+y \).
- Factorize:$4(x - y)^2 - 12(x -y) (x + y) + 9(x + y)^2$
- Simplify:\( 4(x+y)-6(x+y)^{2} \)
- Verify the property: $x \times y = y \times x$ by taking:(i) \( x=-\frac{1}{3}, y=\frac{2}{7} \)(ii) \( x=\frac{-3}{5}, y=\frac{-11}{13} \)(iii) \( x=2, y=\frac{7}{-8} \)(iv) \( x=0, y=\frac{-15}{8} \)
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- Multiply:$(x^6-y^6)$ by $(x^2+y^2)$
- Describe how the following expressions are obtained:$(i) 7 x y+5, (ii) x^{2} y, (iii) 4 x^{2}-5 x$.
- Factorise:(i) \( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)(ii) \( 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z \)
