For the following arithmetic progressions write the first term a and the common difference d:$\frac{1}{5}, \frac{3}{5}, \frac{5}{5}, \frac{7}{5}, ……$
Given:
Given A.P. is $\frac{1}{5}, \frac{3}{5}, \frac{5}{5}, \frac{7}{5}, ……$.
To do:
We have to write the first term a and the common difference d.
Solution:
In the given A.P.,
$a_1=\frac{1}{5}, a_2=\frac{3}{5}, a_3=\frac{5}{5}$
Therefore,
First term $a=a_1=\frac{1}{5}$
Common difference $d=a_2-a_1=\frac{3}{5}-\frac{1}{5}=\frac{3-1}{5}=\frac{2}{5}$.
The first term $a$ is $\frac{1}{5}$ and the common difference $d$ is $\frac{2}{5}$.  
Related Articles For the following arithmetic progressions write the first term a and the common difference d:$-5, -1, 3, 7, …………$
For the following APs, write the first term and the common difference:$\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}, ……..$
For the following APs, write the first term and the common difference:,b>(i) $3, 1, -1, -3, ……$(ii) $-5, -1, 3, 7, ……$(iii) $\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}, ……..$(iv) $0.6, 1.7, 2.8, 3.9, ……$
The reciprocal of $( \frac{5}{7})^{-1}$ is:-$( i).\ \frac{5}{7}$$( ii).\ \frac{-5}{7}$$( iii).\ \frac{7}{5}$$( iv).\ \frac{-7}{5}$
Write the following in ascending order:$\frac{1}{2},\ \frac{4}{5},\ \frac{-2}{3},\ \frac{-1}{2},\ \frac{-5}{7}$.
Simplify the following $ \frac{1}{5}+\left(\frac{2}{5}+\frac{3}{5}\right) $
Compare the fractions and put an appropriate sign.(a) \( \frac{3}{6} \square \frac{5}{6} \)(b) \( \frac{1}{7} \square \frac{1}{4} \)(c) \( \frac{4}{5} \square \frac{5}{5} \)(d) \( \frac{3}{5} \square \frac{3}{7} \)
Simplify the following :$\frac{5}{2} - \frac{3}{5} \times \frac{7}{2} + \frac{3}{5} \times \frac{-2}{3}$
Write the following fractions in ascending order.$\frac{4}{7}, \frac{7}{5}, \frac{2}{5}, \frac{5}{9}$.
Find the common difference and write the next four terms of each of the following arithmetic progressions :$-1, -\frac{5}{6}, -\frac{2}{3}, ………..$
Verify:$\frac{-2}{5} + [\frac{3}{5} + \frac{1}{2}] = [\frac{-2}{5} + \frac{3}{5}] + \frac{1}{2}$
Solve the following :$\frac{-2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$
Find the sum:$-5+\frac{7}{10}+\frac{3}{7}+(-3)+\frac{5}{14}+\frac{4}{5}$"\n
Complete the following:\( -\frac{4}{5} \times \frac{3}{7}+\frac{4}{5} \times \frac{3}{7} \)
Prove that:\( \frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \p \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}=10 \)
Kickstart Your Career
Get certified by completing the course
Get Started