- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
For an AP, if $ m $ times the mth term equals $ \mathrm{n} $ times the $ n $ th term, prove that $ (m+n) $ th term of the AP is zero. $ (m ≠n) $.
Given:
$m$ times the $m^{th}$ term of an AP is equal to $n$ times its $n^{th}$ term.
To do:
We have to prove that \( (m+n) \) th term of the AP is zero.
Solution:
$n^{th}$ term of the AP $=t_n=a+(n−1)d$
$m^{th}$ term of the AP $=t_m=a+(m−1)d$
$(m+n)^{th}$ term of the AP $=a+[(m+n)−1]d$
According to the question,
$\Rightarrow m \times t_m=n \times t_n$
$\Rightarrow m[a+(m−1)d]=n[a+(n−1)d]$
$\Rightarrow m[a+(m−1)d]−n[a+(n−1)d]=0$
$\Rightarrow a(m−n)+d[(m+n)(m−n)−(m−n)]=0$
$\Rightarrow (m−n)[a+d((m+n)−1)]=0$
$\Rightarrow a+[(m+n)−1]d=0$
Hence proved.
Advertisements