- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the values of $p$ and $q$ so that $x^4 + px^3 + 2x^2 - 3x + q$ is divisible by $(x^2 - 1)$.
Given:
Given expression is $x^4 + px^3 + 2x^2 - 3x + q$.
$x^4 + px^3 + 2x^2 - 3x + q$ is divisible by $(x^2 - 1)$.
To do:
We have to find the values of $p$ and $q$.
Solution:
We know that,
If $(x-m)$ is a root of $f(x)$ then $f(m)=0$.
$x^2-1=x^2-1^2$
$=(x+1)(x-1)$
This implies, $x+1$ and $x-1$ are factors of $x^4 + px^3 + 2x^2 - 3x + q$.
Therefore,
$f(-1)=0$
$\Rightarrow (-1)^4+p(-1)^3+2(-1)^2 - 3(-1) + q=0$
$\Rightarrow 1-p+2+3+q=0$
$\Rightarrow p=6+q$...............(i)
$f(1)=0$
$\Rightarrow (1)^4+p(1)^3+2(1)^2 - 3(1) + q=0$
$\Rightarrow 1+p+2-3+q=0$
$\Rightarrow 6+q+q=0$ [From (i)]
$\Rightarrow 6+2q=0$
$\Rightarrow 2q=-6$
$\Rightarrow q=-3$
$\Rightarrow p=6+(-3)=6-3=3$
The values of $p$ and $q$ are $3$ and $-3$ respectively.
- Related Articles
- Find the values of $a$ and $b$ so that $(x + 1)$ and $(x - 1)$ are factors of $x^4 + ax^3 - 3x^2 + 2x + b$.
- Simplify:$(x^3 - 2x^2 + 3x - 4) (x - 1) - (2x - 3) (x^2 - x + 1)$
- What must be added to the polynomial $f(x)\ =\ x^4\ +\ 2x^3\ -\ 2x^2\ +\ x\ -\ 1$ so that the resulting polynomial is exactly divisible by $x^2\ +\ 2x\ -\ 3$?
- If the zeroes of the polynomial $x^2+px+q$ are double in value to the zeroes of $2x^2-5x-3$, find the value of $p$ and $q$.
- If $α$ and $β$ are the zeros of the quadratic polynomial $f(x)\ =\ x^2\ -\ px\ +\ q$, prove that $\frac{α^2}{β^2}\ +\ \frac{β^2}{α^2}\ =\ \frac{p^4}{q^2}\ -\ \frac{4p^2}{q}\ +\ 2$.
- If p, q are real and p≠q, then show that the roots of the equation $(p-q)x^2+5(p+q)x-2(p-q)=0$ are real and unequal.
- For which values of \( a \) and \( b \), are the zeroes of \( q(x)=x^{3}+2 x^{2}+a \) also the zeroes of the polynomial \( p(x)=x^{5}-x^{4}-4 x^{3}+3 x^{2}+3 x+b \) ? Which zeroes of \( p(x) \) are not the zeroes of \( q(x) \) ?
- If $p=-2,\ q=-1$ and $r=3$, find the value of $2 p^{2}-q^{2}+3 r^{2}$.
- If $x^3 + ax^2 - bx + 10$ is divisible by $x^2 - 3x + 2$, find the values of $a$ and $b$.
- Factorise \( 16(2 p-3 q)^{2}-4(2 p-3 q) \).
- If $p=-2,\ q=-1$ and $r=3$, find the value of $p^{2}+q^{2}-r^{2}$.
- Subtract \( 4 p^{2} q-3 p q+5 p q^{2}-8 p+7 q-10 \) from \( 18-3 p-11 q+5 p q-2 p q^{2}+5 p^{2} q \).
- Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder, in each of the following:(i) $p(x) = x^3 - 3x^2 + 5x -3, g(x) = x^2-2$(ii) $p(x) =x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 -x$(iii) $p(x) = x^4 - 5x + 6, g(x) = 2 -x^2$
- Find the values of \( p \) and \( q \) for which the following system of linear equations has infinite number of solutions:$2x+3y=9$$(p+q)x+(2p-q)y=3(p+q+1)$
- The line segment joining the points $(3, -4)$ and $(1, 2)$ is trisected at the points $P$ and $Q$. If the coordinates of $P$ and $Q$ are $(p, -2)$ and $(\frac{5}{3}, q)$ respectively. Find the values of $p$ and $q$.

Advertisements