Find the value of z by transposing method.$\frac{z}{3} = \frac{5}{4}$
Given :
The given expression is $\frac{z}{3} = \frac{5}{4}$
To do :
We have to find the value of z.
Solution :
$\frac{z}{3} = \frac{5}{4}$
We have to find the value of z.
Using transposition method,
$z = \frac{5}{4} \times 3$
$z = \frac{15}{4}$
The value of z is $\frac{15}{4}$.
- Related Articles
- On dividing $^{3}+6 z+4 z^{5} $by $ 2 z-1 $, the quotient obtained is a and the remainder is b.What are the values of a and b?A) $ a=2 z^{4}-z^{3}+z^{2}-\frac{z}{2}+\frac{13}{4} \ and \ b=-\frac{13}{4} $B) $ a=2 z^{4}+z^{3}+z^{2}+\frac{z}{2}+\frac{13}{4} \ and \ b=\frac{13}{4} $C) $ a=2 z^{4}-z^{3}+\frac{z^{2}}{2}+\frac{z}{4}+\frac{23}{8} \ and \ b=-\frac{23}{8} $D) $ a=2 z^{4}+z^{3}+\frac{z^{2}}{2}+\frac{z}{4}+\frac{23}{8} \ and \ b=+\frac{23}{8} $
- Verify the property: $x \times(y + z) = x \times y + x \times z$ by taking:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- Verify the property: $x \times (y \times z) = (x \times y) \times z$ by taking:(i) \( x=\frac{-7}{3}, y=\frac{12}{5}, z=\frac{4}{9} \)(ii) \( x=0, y=\frac{-3}{5}, z=\frac{-9}{4} \)(iii) \( x=\frac{1}{2}, y=\frac{5}{-4}, z=\frac{-7}{5} \)(iv) \( x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18} \)
- Verify associativity of addition of rational numbers i.e., $(x + y) + z = x + (y + z)$, when:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- Solve:$\frac{2}{5} z\ =\ \frac{3}{8} z\ +\ \frac{7}{20}$
- Factorize each of the following expressions:\( \left(\frac{x}{2}+y+\frac{z}{3}\right)^{3}+\left(\frac{x}{3}-\frac{2 y}{3}+z\right)^{3} +\left(-\frac{5 x}{6}-\frac{y}{3}-\frac{4 z}{3}\right)^{3} \)
- Find the following products:\( \frac{-4}{27} x y z\left[\frac{9}{2} x^{2} y z-\frac{3}{4} x y z^{2}\right] \)
- Find the following products:\( \frac{-8}{27} x y z\left(\frac{3}{2} x y z^{2}-\frac{9}{4} x y^{2} z^{3}\right) \)
- Solve the following equations.\( \frac{z}{z+15}=\frac{4}{9} \).
- Simplify each of the following expressions:\( (x+y+z)^{2}+\left(x+\frac{y}{2}+\frac{z}{3}\right)^{2}-\left(\frac{x}{2}+\frac{y}{3}+\frac{z}{4}\right)^{2} \)
- Find the product of $(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z)$ and verify the result for ; $x=2, y=3$ and $z=-1$
- Verify: $x\times(y\times z)=(x\times y)\times z$, where $x=\frac{1}{2},\ y=\frac{1}{3}$ and $z=\frac{1}{4}$.
- Find the value of $\frac{3}{5} \times\left(\frac{-5}{6}\right)-\frac{1}{8} \times \frac{4}{5}+\frac{1}{12} \times \frac{3}{5}$
- Factorize each of the following expressions:\( \frac{1}{27} x^{3}-y^{3}+125 z^{3}+5 x y z \)
- Find the value:$\frac{1}{3}$ divided by $\frac{2}{5}$
Kickstart Your Career
Get certified by completing the course
Get Started