- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the roots of $x\ -\ \frac{3}{x} \ =\ 2$.
Given: $x\ -\ \frac{3}{x} \ =\ 2$
To find: Here we have to find the roots of the given equation $x\ -\ \frac{3}{x} \ =\ 2$.
Solution:
$x\ -\ \frac{3}{x} \ =\ 2$
$\frac{x^{2} \ -\ 3}{x} \ =\ 2$
$x^{2} \ -\ 3\ =\ 2x$
$x^{2} \ -\ 2x\ -\ 3\ =\ 0$
$x^{2} \ -\ 3x\ +\ x\ -\ 3\ =\ 0$
$x( x\ -\ 3) \ +\ 1\ ( x\ -\ 3) \ =\ 0$
$( x\ -\ 3)( x\ +\ 1) \ =\ 0$
So,
$x\ -\ 3\ =\ 0$ and $x\ +\ 1\ =\ 0$
$\mathbf{x\ =\ 3}$ and $\mathbf{x\ =\ -1}$
Therefore, the roots are 3 and $-$1.
- Related Articles
- Find whether the following equations have real roots. If real roots exist, find them.\( \frac{1}{2 x-3}+\frac{1}{x-5}=1, x ≠ \frac{3}{2}, 5 \)
- If \( x-\frac{1}{x}=3+2 \sqrt{2} \), find the value of \( x^{3}- \frac{1}{x^{3}} \).
- Find the value of x:$ 2 x - \frac{2}{5} = \frac{3}{5} - x$
- If \( x^{2}+\frac{1}{x^{2}}=51 \), find the value of \( x^{3}-\frac{1}{x^{3}} \).
- If \( x^{2}+\frac{1}{x^{2}}=98 \), find the value of \( x^{3}+\frac{1}{x^{3}} \).
- Find the value of $x^2+\frac{1}{x^2}$ if $x+\frac{1}{x}=3$.
- If $\frac{2 x}{5}-\frac{3}{2}=\frac{x}{2}+1$, find the value of $x$.
- Find the value of $x$$\frac{x+2}{2}- \frac{x+1}{5}=\frac{x-3}{4}-1$
- Find the value of $x$:$\frac{7}{2} x-\frac{5}{2} x=\frac{20 x}{3}+10$.
- If $\frac{x-3}{5}-2=\frac{2 x}{5}$, find the value of $x$.
- Find the roots of the following quadratic equations by the factorisation method:\( \frac{2}{5} x^{2}-x-\frac{3}{5}=0 \)
- Simplify each of the following:$(x+\frac{2}{x})^{3}+(x-\frac{2}{x})^{3}$
- Find the roots of the following quadratic equations by the factorisation method:\( 2 x^{2}+\frac{5}{3} x-2=0 \)
- Determine the nature of the roots of the following quadratic equations: $\frac{3}{5}x^2 - \frac{2}{3}x + 1 = 0$
- If $\frac{x}{3}=\frac{2}{7}$, find the value of $x$.

Advertisements