- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the roots of the following quadratic equations (if they exist) by the method of completing the square.
$4x^2 + 4\sqrt3 x + 3 = 0$
Given:
Given quadratic equation is $4x^2 + 4\sqrt3 x + 3 = 0$.
To do:
We have to find the roots of the given quadratic equation.
Solution:
$4x^2 + 4\sqrt3 x + 3 = 0$
$4(x^2 + \sqrt3 x +\frac{3}{4})=0$
$x^2+2\times \frac{1}{2} \times \sqrt3 x =-\frac{3}{4}$
$x^2+2\frac{\sqrt3}{2}x=-\frac{3}{4}$
Adding $(\frac{\sqrt3}{2})^2$ on both sides completes the square. Therefore,
$x^2+2\frac{\sqrt3}{2}x+(\frac{\sqrt3}{2})^2=-\frac{3}{4}+(\frac{\sqrt3}{2})^2$
$(x+\frac{\sqrt3}{2})^2=-\frac{3}{4}+\frac{3}{4}$ (Since $(a+b)^2=a^2+2ab+b^2$)
$(x+\frac{\sqrt3}{2})^2=0$
$x+\frac{\sqrt3}{2}=0$
$x=-\frac{\sqrt3}{2}$ or $x=-\frac{\sqrt3}{2}$
The values of $x$ are $-\frac{\sqrt3}{2}$ and $-\frac{\sqrt3}{2}$.
Advertisements