- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# Find the roots of the following quadratic equations (if they exist) by the method of completing the square.

$4x^2 + 4\sqrt3 x + 3 = 0$

Given:

Given quadratic equation is $4x^2 + 4\sqrt3 x + 3 = 0$.

To do:

We have to find the roots of the given quadratic equation.

Solution:

$4x^2 + 4\sqrt3 x + 3 = 0$

$4(x^2 + \sqrt3 x +\frac{3}{4})=0$

$x^2+2\times \frac{1}{2} \times \sqrt3 x =-\frac{3}{4}$

$x^2+2\frac{\sqrt3}{2}x=-\frac{3}{4}$

Adding $(\frac{\sqrt3}{2})^2$ on both sides completes the square. Therefore,

$x^2+2\frac{\sqrt3}{2}x+(\frac{\sqrt3}{2})^2=-\frac{3}{4}+(\frac{\sqrt3}{2})^2$

$(x+\frac{\sqrt3}{2})^2=-\frac{3}{4}+\frac{3}{4}$ (Since $(a+b)^2=a^2+2ab+b^2$)

$(x+\frac{\sqrt3}{2})^2=0$

$x+\frac{\sqrt3}{2}=0$

$x=-\frac{\sqrt3}{2}$ or $x=-\frac{\sqrt3}{2}$

**The values of $x$ are $-\frac{\sqrt3}{2}$ and $-\frac{\sqrt3}{2}$.**

Advertisements