- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the interest, if $P=550, t=2\frac{1}{2}, r=4$%.
Given:
Principal $= Rs. 550$
Time $= 2\frac{1}{2} years = \frac{5}{2} years$
Rate of interest $= 4$%
To do :
We have to find interest.
Solution :
We know that,
Simple interest (SI) $= \frac{PTR}{100}$
where P is the principal, T is time and R is the rate of interest.
Therefore,
$SI = Rs. 550\times \frac{5}{2} \times \frac{4}{100}$
$= Rs. 550\times \frac{20}{200}$
$= Rs. \frac{550}{10}$
$= Rs. 55$.
Therefore, interest is Rs.55.
- Related Articles
- Find the following product.\( \left(\frac{4}{3} p q^{2}\right) \times\left(\frac{-1}{4} p^{2} r\right) \times\left(16 p^{2} q^{2} r^{2}\right) \)
- Find the value of $t$, if \( \frac{3 t-2}{4}-\frac{2 t+3}{3}=\frac{2}{3}-t \).
- If $p=-2,\ q=-1$ and $r=3$, find the value of $p^{2}+q^{2}-r^{2}$.
- If $p=-2,\ q=-1$ and $r=3$, find the value of $2 p^{2}-q^{2}+3 r^{2}$.
- Simplify:\( 5 \frac{1}{4} \p 2 \frac{1}{3}-4 \frac{2}{3} \p 5 \frac{1}{3} \times 3 \frac{1}{2} \)
- Find \( p(0), p(1) \) and \( p(2) \) for each of the following polynomials:(i) \( p(y)=y^{2}-y+1 \)(ii) \( p(t)=2+t+2 t^{2}-t^{3} \)(iii) \( p(x)=x^{3} \)(iv) \( p(x)=(x-1)(x+1) \)
- If $p=-2,\ q=-1$ and $r=3$, find the value of $p-q-r$.
- Find \( y \), if\( \left(-\frac{1}{2}\right)^{-20} \p\left(-\frac{1}{2}\right)^{9}=\left(-\frac{1}{2}\right)^{-2 y+1} \)
- If $x+\frac{1}{x}=4$, then find, $x^{2}+\frac{1}{x^2}=?$
- Find the value of t$\frac{3t-2}{4}$$- $$\frac{2t+3}{3}$ = $\frac{2}{3-t}$
- Find the value of $x$, if$3x\ -\ \frac{1}{4}\ =\ \frac{1}{2}$.
- If both $(x-2)$ and $(x -\frac{1}{2})$ are factors of $px^2+5x+r$ , prove that $p = r$ .
- Simplify each of the following.(a) \( \left(\frac{1}{2} a-b\right)\left(\frac{1}{2} a+b\right)\left(\frac{1}{4} a^{2}+b^{2}\right) \)(b) \( \left(\frac{p}{2}-\frac{q}{3}\right)\left(\frac{p}{2}+\frac{q}{3}\right)\left(\frac{p^{2}}{4}+\frac{q^{2}}{9}\right)\left(\frac{p^{4}}{16}+\frac{a^{4}}{81}\right) \)(c) \( \left(a^{2}+1-a\right)\left(a^{2}-1+a\right) \)(d) \( \left(4 b^{2}+2 b+1\right)\left(4 b^{2}-2 b-1\right) \)
- Solve the following linear equation.\( \frac{3 t-2}{4}-\frac{2 t+3}{3}=\frac{2}{3}-t \).
- If $x - \frac{1}{x} = 3$, find the values of $x^2 + \frac{1}{x^2}$ and $x^4 + \frac{1}{x^4}$.

Advertisements