- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the area of the sector of a circle of radius $ 5 \mathrm{~cm} $, if the corresponding arc length is $ 3.5 \mathrm{~cm} $.
Given:
Radius of the circle $r=5 \mathrm{~cm}$.
Length of the corresponding arc $=3.5 \mathrm{cm}$
To do:
We have to find the area of the sector.
Solution:
Let the central angle of the sector be $\theta$.
Central angle of the sector $\theta=\frac{Arc\ length}{Radius}$
$=\frac{3.5}{5}$
$=0.7\ R$
$=(0.7\times\frac{180}{\pi})^o$
Area of the sector $=\pi r^2 \frac{\theta}{360^o}$
$=\pi 5^2 \times (0.7\times\frac{180}{\pi})^o \times \frac{1}{360^o}$
$=25\times0.7 \times \frac{1}{2}$
$=8.75\ cm^2$
The area of the sector is $8.75\ cm^2$.
Advertisements