- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the area of a rhombus whose perimeter is $80\ m$ and one of whose diagonal is $24\ m$.
Given:
A rhombus whose perimeter is $80\ m$ and one of whose diagonal is $24\ m$.
To do:
We have to find the area of the rhombus.
Solution:
Let the perimeter of the rhombus $ABCD$ be $80\ m$.
Each side $=\frac{80}{4}$
$=20 \mathrm{~m}$
One of the diagonals $=24 \mathrm{~m}$
Diagonals of a rhombus bisect each other at right angles.
In right angled triangle $\mathrm{AOB}$,
$\mathrm{AB}=20 \mathrm{~m}$
$\mathrm{AO}=\frac{1}{2} \mathrm{AC}$
$=\frac{1}{2} \times 24$
$=12 \mathrm{~m}$
$A B^{2}=A O^{2}+O B^{2}$
$(20)^{2}=(12)^{2}+O B^{2}$
$400=144+O B^{2}$
$O B^{2}=400-144$
$=256$
$=(16)^{2}$
$\Rightarrow OB=16 \mathrm{~m}$
$B D=2 \times O B$
$=2 \times 16$
$=32 \mathrm{~m}$
Area of the rhombus $=\frac{1}{2} \times d_{1} \times d_{2}$
$=\frac{1}{2} \times 24 \times 32$
$=384 \mathrm{~m}^{2}$.