- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find $n$ so that
$(\frac{4}{5})^3)\times(\frac{4}{5})^{-6}=(\frac{4}{5})^{2n-1}$.
Given:
$(\frac{4}{5})^3)\times(\frac{4}{5})^{-6}=(\frac{4}{5})^{2n-1}$.
To do:
We have to find the value of $n$.
Solution:
We know that,
$a^m\times a^n=a^{m+n}$
Therefore,
LHS
$(\frac{4}{5})^3)\times(\frac{4}{5})^{-6}=(\frac{4}{5})^{3+(-6)})$
$=(\frac{4}{5})^{(-3)})$
RHS$=(\frac{4}{5})^{2n-1}$
Equating the powers on LHS and RHS, we get,
$-3=2n-1$
$2n=-3+1$
$2n=-2$
$n=\frac{-2}{2}$
$n=-1$
The value of $n$ is $-1$.
Advertisements