- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Fill in the blank $(x+a)(x+b)=x^2$+______ $x+a b$
To do: Fill in the blanks
Solution:
$(x + a) (x + b)$
Multiply each and every term inside the brackets,
$x \times x = x^2$
$x \times a = a x$
$x \times b = b x$
$a \times b = a b$
add all,
$x ^2 + a x + b x + ab$
$ x^2 + (a+b)x + ab$ [$ax + bx = [a+b]x$ ; take $x$ as common]
$(x + a) (x + b) = x^2 + (a+b)x + ab$
So, $(a+b)$ will be filled in the bank.
- Related Articles
- $( x-2)$ is a common factor of $x^{3}-4 x^{2}+a x+b$ and $x^{3}-a x^{2}+b x+8$, then the values of $a$ and $b$ are respectively.
- Show that:\( \left(\frac{x^{a^{2}+b^{2}}}{x^{a b}}\right)^{a+b}\left(\frac{x^{b^{2}+c^{2}}}{x^{b c}}\right)^{b+c}\left(\frac{x^{c^{2}+a^{2}}}{x^{a c}}\right)^{a+c}= x^{2\left(a^{3}+b^{3}+c^{3}\right)} \)
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1 \)
- Prove that:\( \left(\frac{x^{a}}{x^{-b}}\right)^{a^{2}-a b+b^{2}} \times\left(\frac{x^{b}}{x^{-c}}\right)^{b^{2}-b c+c^{2}} \times\left(\frac{x^{c}}{x^{-a}}\right)^{c^{2}-c a+a^{2}}=1 \)
- Simplify:(i) $2x^2 (x^3 - x) - 3x (x^4 + 2x) -2(x^4 - 3x^2)$(ii) $x^3y (x^2 - 2x) + 2xy (x^3 - x^4)$(iii) $3a^2 + 2 (a + 2) - 3a (2a + 1)$(iv) $x (x + 4) + 3x (2x^2 - 1) + 4x^2 + 4$(v) $a (b-c) - b (c - a) - c (a - b)$(vi) $a (b - c) + b (c - a) + c (a - b)$(vii) $4ab (a - b) - 6a^2 (b - b^2) -3b^2 (2a^2 - a) + 2ab (b-a)$(viii) $x^2 (x^2 + 1) - x^3 (x + 1) - x (x^3 - x)$(ix) $2a^2 + 3a (1 - 2a^3) + a (a + 1)$(x) $a^2 (2a - 1) + 3a + a^3 - 8$(xi) $\frac{3}{2}-x^2 (x^2 - 1) + \frac{1}{4}-x^2 (x^2 + x) - \frac{3}{4}x (x^3 - 1)$(xii) $a^2b (a - b^2) + ab^2 (4ab - 2a^2) - a^3b (1 - 2b)$(xiii) $a^2b (a^3 - a + 1) - ab (a^4 - 2a^2 + 2a) - b (a^3- a^2 -1)$.
- Solve the following pairs of linear equations: (i) \( p x+q y=p-q \)$q x-p y=p+q$(ii) \( a x+b y=c \)$b x+a y=1+c$,b>(iii) \( \frac{x}{a}-\frac{y}{b}=0 \)$a x+b y=a^{2}+b^{2}$(iv) \( (a-b) x+(a+b) y=a^{2}-2 a b-b^{2} \)$(a+b)(x+y)=a^{2}+b^{2}$(v) \( 152 x-378 y=-74 \)$-378 x+152 y=-604$.
- Solve the following quadratic equation by factorization: $\frac{a}{x-b}+\frac{b}{x-a}=2, x ≠ a, b$
- Solve the following:If $x^{2}+\frac{1}{x^{2}}=3,$ find a) $ x-\frac{1}{x}$b) $x+\frac{1}{x} $
- If \( 2 x+3 \) and \( x+2 \) are the factors of the polynomial \( g(x)=2 x^{3}+a x^{2}+27 x+b \), find the value of the constants $a$ and $b$.
- Solve by any method except cross multiplication$a(x+y)+b(x-y)=a^2-ab+b^2$ and $a(x+y)-b(x-y)=a^2+ab+b^2$
- Find the value of $(x-a)^3 + (x-b)^3 + (x-c)^3 - 3 (x-a)(x-b)(x-c)$ if $a+b+c = 3x$
- If \( x^{2}+\frac{1}{x^{2}}=62 \), find the value of(a) \( x+\frac{1}{x} \)(b) \( x-\frac{1}{x} \)
- Solve: \( \frac{\sqrt{x+a}+\sqrt{x-b}}{\sqrt{x+a}-\sqrt{x-b}}=\frac{a+b}{a-b}(a \eq b) \)
- Which of the following is a factor of $f( x)=x^{2}-9 x+20?$$A).\ ( x-2)$$B).\ ( x-3)$$C).\ ( x-4)$$D).\ ( x-5)$
- Simplify:\( \left(\frac{x^{a+b}}{x^{c}}\right)^{a-b}\left(\frac{x^{b+c}}{x^{a}}\right)^{b-c}\left(\frac{x^{c+a}}{x^{b}}\right)^{c-a} \)

Advertisements