- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Factorise : (lm + l) + m + 1
Given: $ (lm+l)+m+1$
To do: Factorise the given expression
Solution:
$ (lm+l)+m+1$
= $ l(m+1) + m + 1 $
We can take m+1 as common
= $ (m+1)(l+1) $
So $ (m+1) , (l+1) $ are the two factors
- Related Articles
- Simplify:\( \sqrt[lm]{\frac{x^{l}}{x^{m}}} \times \sqrt[m n]{\frac{x^{m}}{x^{n}}} \times \sqrt[n l]{\frac{x^{n}}{x^{l}}} \)
- If $l+m+n=9$ and $l^2+m^2+n^2=31$, then find the value of $lm + mn + nl$.
- If \( a=x^{m+n} y^{l}, b=x^{n+l} y^{m} \) and \( c=x^{l+m} y^{n} \), prove that \( a^{m-n} b^{n-1} c^{l-m}=1 . \)
- Construct PDA for L = {0n1m2(n+m) | m,n >=1}
- Factorize$(l+m)^{2}-(l-m)^{2}$
- Simplify: \( \left(\frac{2}{7} l-\frac{1}{4} m\right)\left(\frac{2}{7} l-\frac{1}{4} m\right) \).
- If \( x=a^{m+n}, y=a^{n+1} \) and \( z=a^{l+m} \), prove that \( x^{m} y^{n} z^{l}=x^{n} y^{l} z^{m} \)
- Factorize the expression: $( l+m)^2-( l-m)^2$.
- Construct a PDA for language L = {0n 1m2m3n | n>=1, m>=1}
- Find the numerical value of \( P: Q \) where \( \mathrm{P}=\left(\frac{x^{m}}{x^{n}}\right)^{m+n-l} \times\left(\frac{x^{n}}{x^{l}}\right)^{n+l-m} \times\left(\frac{x^{l}}{x^{m}}\right)^{l+m-n} \) and\( \mathrm{Q}=\left(x^{1 /(a-b)}\right)^{1 /(a-c)} \times\left(x^{1 /(b-c)}\right)^{1 /(b-a)} \times\left(x^{1 /(c-a)}\right)^{1 /(c-b)} \)where \( a, b, c \) being all different.A. \( 1: 2 \)B. \( 2: 1 \)C. \( 1: 1 \)D. None of these
- Construct Turing machine for L = {an bm a(n+m) - n,m≥1} in C++
- If $l, m, n$ are three lines such that $l \parallel m$ and $n \perp l$, prove that $n \perp m$.
- Design NPDA for accepting the language L = {am b(2m) | m>=1}
- Factorise:$4a^{2}-4b^{2}+4a+1$.
- Factorise $16x^{4}-4x^{2}+4x-1 ?$

Advertisements