- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Expand $ (x-y)^{2}-2(x-y)
Given:
\( (x-y)^{2}-2(x-y) \).
To do:
We have to expand \( (x-y)^{2}-2(x-y) \).
Solution:
We know that,
$(a-b)^2=a^2-2ab+b^2$
$(x-y)^{2}-2(x-y)=x^2-2xy+y^2-2x-2(-y)$
$=x^2+y^2-2xy-2x+2y$
Therefore,
$(x-y)^{2}-2(x-y)=x^2+y^2-2xy-2x+2y$.
- Related Articles
- Verify : (i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
- Factorize:$4(x - y)^2 - 12(x -y) (x + y) + 9(x + y)^2$
- Simplify:$x^2 (x-y) y^2 (x + 2y)$
- Factorize:\( x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3} \)
- Factorize:\( x^{2}+y-x y-x \)
- Simplify: \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
- Factorize:$2(x+y)^2 - 9(x+y) -5$
- Factorize the expression $x-y-x^2+y^2$.
- Factorize the algebraic expression $a^2(x+y)+b^2(x+y)+c^2(x+y)$.
- Factorise:(i) \( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)(ii) \( 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z \)
- Simplify: $2(x^2 - y^2 +xy) -3(x^2 +y^2 -xy)$.
- Solve the following pairs of equations:\( \frac{2 x y}{x+y}=\frac{3}{2} \)\( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
- 1. Factorize the expression \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. Factorize the expression \( \mathrm{xy}-\mathrm{x}-\mathrm{y}+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- Verify that \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- Simplify:$(x^2 + y^2 - z^2)^2 - (x^2 - y^2 + z^2)^2$

Advertisements