Draw any line segment $ \overline{\mathrm{PQ}} $. Take any point $ \mathrm{R} $ not on it. Through $ \mathrm{R} $, draw a perpendicular to $ \overline{\mathrm{PQ}} $. (use ruler and set-square)
To do:
We have to draw a perpendicular to $\overline{PQ}$.
Solution:
Steps of construction:
(i) Let us draw a line segment $\overline{PQ}$ and mark a point R outside it.
(ii) Now, place a set square in such a way that one of its right angles aligns with $\overline{PQ}$
(iii) Now, by placing a ruler along the edge opposite to the right angle of the set-square hold the ruler fixed.
(iv) Then, let us slide the set-square along the ruler such that the point R touches the other side of the set-square.
(v) Now, let's draw a line along the edge of the set-square which passes through point R.
(vi) Therefore, the required line perpendicular to $\overline{PQ}$ is formed.
Related Articles Draw any line segment \( \overline{\mathrm{AB}} \). Mark any point \( \mathrm{M} \) on it. Through \( \mathrm{M} \), draw a perpendicular to \( \overline{\mathrm{AB}} \). (use ruler and compasses)
Draw any line segment \( \overline{\mathrm{PQ}} \). Without measuring \( \overline{\mathrm{PQ}} \), construct a copy of \( \overline{\mathrm{PQ}} \).
Draw a line $l$ and a point \( \mathrm{X} \) on it. Through \( \mathrm{X} \), draw a line segment \( \overline{\mathrm{XY}} \) perpendicular to $1$. Now draw a perpendicular to \( \overline{X Y} \) at Y. (use ruler and compasses)
Let \( \overline{\mathrm{PQ}} \) be the perpendicular to the line segment \( \overline{\mathrm{XY}} \). Let \( \overline{\mathrm{PQ}} \) and \( \overline{\mathrm{XY}} \) intersect in the point \( \mathrm{A} \). What is the measure of \( \angle \mathrm{PAY} \) ?
Draw a circle with centre \( \mathrm{C} \) and radius \( 3.4 \mathrm{~cm} \). Draw any chord \( \overline{\mathrm{AB}} \). Construct the perpendicular bisector of \( \overline{\mathrm{AB}} \) and examine if it passes through \( \mathrm{C} \).
Given some line segment \( \overline{\mathrm{AB}} \), whose length you do not know, construct \( \overline{\mathrm{PQ}} \) such that the length of \( \overline{\mathrm{PQ}} \) is twice that of \( \overline{\mathrm{AB}} \).
Draw any angle with vertex \( O \). Take a point \( A \) on one of its arms and \( B \) on another such that \( \mathrm{OA}=\mathrm{OB} \). Draw the perpendicular bisectors of \( \overline{\mathrm{OA}} \) and \( \overline{\mathrm{OB}} \). Let them meet at P. Is \( \mathrm{PA}=\mathrm{PB} \) ?
With \( \overline{\mathrm{PQ}} \) of length \( 6.1 \mathrm{~cm} \) as diameter, draw a circle.
Draw a rough figure and label suitably in each of the following cases:(a) Point \( P \) lies on \( \overline{\mathrm{AB}} \).(b) \( \overline{\mathrm{XY}} \) and \( \overline{\mathrm{PQ}} \) intersect at \( \mathrm{M} \).(c) Line \( l \) contains \( \bar{E} \) and \( \bar{F} \) but not \( \bar{D} \).(d) \( \overline{\mathrm{OP}} \) and \( \overline{\mathrm{OQ}} \) meet at \( O \).
Given \( \overline{\mathrm{AB}} \) of length \( 3.9 \mathrm{~cm} \), construct \( \overline{\mathrm{PQ}} \) such that the length of \( \overline{\mathrm{PQ}} \) is twice that of \( \overline{\mathrm{AB}} \). Verify by measurement.(Hint : Construct \( \overline{\mathrm{PX}} \) such that length of \( \overline{\mathrm{PX}}= \) length of \( \overline{\mathrm{AB}} \); then cut off \( \overline{\mathrm{XQ}} \) such that \( \overline{\mathrm{XQ}} \) also has the length of \( \overline{\mathrm{AB}} \).)"\n
Draw the perpendicular bisector of \( \overline{X Y} \) whose length is \( 10.3 \mathrm{~cm} \).(a) Take any point \( \mathrm{P} \) on the bisector drawn. Examine whether \( \mathrm{PX}=\mathrm{PY} \).(b) If \( \mathrm{M} \) is the mid point of \( \overline{\mathrm{XY}} \), what can you say about the lengths \( \mathrm{MX} \) and \( \mathrm{XY} \) ?
In Fig. 6.31, if \( \mathrm{PQ} \| \mathrm{ST}, \angle \mathrm{PQR}=110^{\circ} \) and \( \angle \mathrm{RST}=130^{\circ} \), find \( \angle \mathrm{QRS} \).[Hint : Draw a line parallel to ST through point R.]"\n
Draw a line segment \( A B=5.5 \mathrm{cm} \). Find a point \( P \) on it such that \( \overline{A P}=\frac{2}{3} \overline{P B} \).
If \( \mathrm{B} \) is the mid point of \( \overline{\mathrm{AC}} \) and \( \mathrm{C} \) is the mid point of \( \overline{\mathrm{BD}} \), where \( \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} \) lie on a straight line, say why \( \mathrm{AB}=\mathrm{CD} \)?
Find the coordinates of the point \( R \) on the line segment joining the points \( \mathrm{P}(-1,3) \) and \( \mathrm{Q}(2,5) \) such that \( \mathrm{PR}=\frac{3}{5} \mathrm{PQ} \).
Kickstart Your Career
Get certified by completing the course
Get Started