- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Do magnets get attracted to nonmetals or only metals?
A magnet is a very special metal that produces a magnetic field. All magnets have north and south poles. Opposite poles are attracted to each other, while the same poles repel each other.
When a magnet goes near a special kind of metal or other magnets, it pulls, or attract the other metal or magnet closer.
Those special metals are Iron, cobalt, and nickel. Metals that have iron in them attract magnets well. Steel is one.
Metals like brass, copper, zinc, and aluminum are not attracted to magnets.
Magnets can make some other metals into magnets when they are rubbed together.
From the above explanation, we came to the conclusion that Magnets only attract some of the metals, not the non-metals.
- Related Articles
- Difference between ++*p, *p++ and *++p in c++
- Difference between ++*p, *p++ and *++p in C
- Subtract \( 4 p^{2} q-3 p q+5 p q^{2}-8 p+7 q-10 \) from \( 18-3 p-11 q+5 p q-2 p q^{2}+5 p^{2} q \).
- Out of three metals P, Q and R, P is less reactive than Q and R is more reactive than P and Q both. Suggest an activity to arrange P, Q and R in order of their decreasing reactivity.
- If $ p=-10$ find the value of $p^{2}-2 p-100 $
- Solve \( 2 p^{2} q^{2}-3 p q+4,5+7 p q-3 p^{2} q^{2} \).
- Simplify: \( (-9 \p 3)-(-49 \p 7) \)
- If magnets attract iron, then why don't we get attracted toward it when we eat green leafy vegetables that contain iron?
- Simplify and verify the result for $p=1$.$4 p^{3} \times 3 p^{4} \times( -p^{5})$"\n
- If $p,\ q,\ r$ are in A.P., then show that $p^2( p+r),\ q^2( r+p),\ r^2( p+q)$ are also in A.P.
- Two tangent segments \( P A \) and \( P B \) are drawn to a circle with centre \( O \) such that \( \angle A P B=120^{\circ} . \) Prove that \( O P=2 A P \).
- $\sqrt{\frac{16}{49}}=\frac{P}{49};\ p=?$
- (a) State five characteristics of metals and five characteristics of nonmetals.(b) State five uses of metals and five uses of non-metals.
- P WAVE
- Given that \( \frac{4 p+9 q}{p}=\frac{5 q}{p-q} \) and \( p \) and \( q \) are both positive. The value of $\frac{p}{q}$ is

Advertisements