Determine, whether the following pair of linear equation is consistent  /inconsistent. $x-y=8;\ 3x-3y=16$


Given: Equations: $x-y=8;\ 3x-3y=16$.

To do: To determine, whether the given pair of linear equation is consistent  /inconsistent. 

Solution:

Given equations: $x-y=8;\ 3x-3y=16$.

Here, $a_1=1,\ b_1=-1,\ c_1=8$ and $a_2=3,\ b_2=-3,\ c_2=16$.

$\frac{a_1}{a_2}=\frac{1}{3}$

$\frac{b_1}{b_2}=\frac{-1}{-3}=\frac{1}{3}$

$\frac{c_1}{c_2}=\frac{8}{16}=\frac{1}{2}$

Here, we find that $\frac{a_1}{a_2}=\frac{b_1}{b_2}≠\frac{c_1}{c_2}$

Thus, given pair of linear equations has no solution.

Therefore, given pair of linear equations is inconsistent.

Tutorialspoint
Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

35 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements