Determine, if 3 is a root of the equation given below:$\sqrt{x^2-4x+3} + \sqrt{x^2-9} = \sqrt{4x^2-14x+16}$
Given:
Given equation is $\sqrt{x^2-4x+3} + \sqrt{x^2-9} = \sqrt{4x^2-14x+16}$.
To do:
Here, we have to determine if 3 is a root of the given equation.
Solution:
For $x=3$
LHS
$\sqrt{x^2-4x+3} + \sqrt{x^2-9} = \sqrt{(3)^2-4(3)+3} + \sqrt{(3)^2-9}$
$=\sqrt{9-12+3}+\sqrt{9-9}$
$=0$
RHS
$\sqrt{4x^2-14x+16}=\sqrt{4(3)^2-14(3)+16}$
$=\sqrt{36-42+16}$
$=\sqrt{10}$
LHS$≠$RHS
Therefore, $x=3$ is not a solution of the given equation.
- Related Articles
- If $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=x,\ \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=y$, find the value $x^{2}+y^{2}+x y$.
- In the following, determine whether the given values are solutions of the given equation or not: $x^2\ −\ 3\sqrt{3}x\ +\ 6\ =\ 0,\ x\ =\ \sqrt{3}$ and $x\ =\ −2\sqrt{3}$
- Solve for $x:\ \sqrt{3} x^{2} -2\sqrt{2} x-2\sqrt{3} =0$."\n33207"
- Find the value of the discriminant.$\sqrt{2}x^2 + 4x +2\sqrt{2} = 0$.
- Solve the equation for x: $4\sqrt{3} x^{2} +5x-2\sqrt{3} =0$
- In the following, determine whether the given values are solutions of the given equation or not: $x^2\ –\ \sqrt{2}x\ –\ 4\ =\ 0,\ x\ =\ -\sqrt{2},\ x\ =\ -2\sqrt{2}$
- Solve the following quadratic equation for x:$4\sqrt{3} x^{2} +5x-2\sqrt{3} =0$
- Solve the following quadratic equation by factorization: $\sqrt{3}x^2-2\sqrt{2}x-2\sqrt3=0$
- Simplify:\( \frac{3 \sqrt{2}-2 \sqrt{3}}{3 \sqrt{2}+2 \sqrt{3}}+\frac{\sqrt{12}}{\sqrt{3}-\sqrt{2}} \)
- Find the discriminant of the quadratic equation $3\sqrt{3}x^2+10x+\sqrt{3}$.
- In the following, determine whether the given values are solutions of the given equation or not: $2x^2\ –\ x\ +\ 9\ =\ x^2\ +\ 4x\ +\ 3,\ x\ =\ 2,\ x\ =\ 3$
- Simplify each of the following expressions:(i) \( (3+\sqrt{3})(2+\sqrt{2}) \)(ii) \( (3+\sqrt{3})(3-\sqrt{3}) \)(iii) \( (\sqrt{5}+\sqrt{2})^{2} \)(iv) \( (\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2}) \)
- Which of the following is not a polynomial?(a) $x^{2}+\sqrt{2} x+3$ (b) $x^{3}+3 x^{2}-3$ (c) $6 x+4$ d) $x^{2}-\sqrt{2 x}+6$
- Given that \( \sqrt{2} \) is a zero of the cubic polynomial \( 6 x^{3}+\sqrt{2} x^{2}-10 x-4 \sqrt{2} \), find its other two zeroes.
- If $x\ =\ 2\ +\ 3\sqrt{2}$Find $x\ + \frac{4}{x}$.
Kickstart Your Career
Get certified by completing the course
Get Started