Arrange the numbers in descending order :
$\frac{4}{5}, \frac{2}{7}, \frac{5}{3}$
Given :
The given terms are $\frac{4}{5}, \frac{2}{7}, \frac{5}{3}$.
To do :
We have to arrange the given terms in descending order.
Solution :
$\frac{4}{5}, \frac{2}{7}, \frac{5}{3}$.
To arrange the given numbers in descending order first we have to find the LCM of the denominators.
LCM of 5,7 and 3 $= 5\times7\times3 = 105$.
$\frac{4}{5} = \frac{4\times 21}{5 \times 21} = \frac{84}{105}$
$\frac{2}{7} = \frac{2\times 15}{7 \times 15} = \frac{30}{105}$
$\frac{5}{3} = \frac{5 \times 35}{3 \times 35} = \frac{175}{105}$
Comparing the numerators,
$30<84<175$
Therefore,
$\frac{175}{105} > \frac{84}{105} > \frac{30}{105}$
$\frac{5}{3} >\frac{4}{5} >\frac{2}{7}$
The given numbers in descending order is $\frac{5}{3} ,\frac{4}{5} ,\frac{2}{7}$
- Related Articles
- Arrange the following in descending order:(i) $\frac{2}{9},\ \frac{2}{3},\ \frac{8}{21}$(ii) $\frac{1}{5},\ \frac{3}{7},\ \frac{7}{10}$
- Arrange the following rational numbers in descending order$-\frac{3}{10} ,\frac{-7}{-5}, \frac{9}{-15}, 1\frac{8}{30}$.
- Write the following rational numbers in ascending order:$(i)$. $\frac{-3}{5},\ \frac{-2}{5},\ \frac{-1}{5}$$(ii)$. $\frac{1}{3},\ \frac{-2}{9},\ \frac{-4}{3}$$(iii)$. $\frac{-3}{7},\ \frac{-3}{2},\ \frac{-3}{4}$
- Simplify:(i) \( \frac{-3}{2}+\frac{5}{4}-\frac{7}{4} \)(ii) \( \frac{5}{3}-\frac{7}{6}+\frac{-2}{3} \)(iii) \( \frac{5}{4}-\frac{7}{6}-\frac{-2}{3} \)(iv) \( \frac{-2}{5}-\frac{-3}{10}-\frac{-4}{7} \)(v) \( \frac{5}{6}+\frac{-2}{5}-\frac{-2}{15} \)(vi) \( \frac{3}{8}-\frac{-2}{9}+\frac{-5}{36} \)
- Write the following in ascending order:$\frac{1}{2},\ \frac{4}{5},\ \frac{-2}{3},\ \frac{-1}{2},\ \frac{-5}{7}$.
- Simplify$[(\frac{3}{5})^{5}$ $\times$ $(\frac{2}{7})^{3} ]$ $\div [(\frac{-3}{7})^{4} \times (\frac{2}{5})^{5}]$
- Write the following fractions in ascending order.$\frac{4}{7}, \frac{7}{5}, \frac{2}{5}, \frac{5}{9}$.
- Re-arrange suitably and find the sum in each of the following:(i) \( \frac{11}{12}+\frac{-17}{3}+\frac{11}{2}+\frac{-25}{2} \)(ii) \( \frac{-6}{7}+\frac{-5}{6}+\frac{-4}{9}+\frac{-15}{7} \)(iii) \( \frac{3}{5}+\frac{7}{3}+\frac{9}{5}+\frac{-13}{15}+\frac{-7}{3} \)(iv) \( \frac{4}{13}+\frac{-5}{8}+\frac{-8}{13}+\frac{9}{13} \)(v) \( \frac{2}{3}+\frac{-4}{5}+\frac{1}{3}+\frac{2}{5} \)(vi) \( \frac{1}{8}+\frac{5}{12}+\frac{2}{7}+\frac{7}{12}+\frac{9}{7}+\frac{-5}{16} \)
- Multiply the following fractions:(i) $\frac{2}{5}\times5\frac{1}{4}$(ii) $6\frac{2}{5}\times\frac{7}{9}$(iii) $\frac{3}{2}\times5\frac{1}{3}$(iv) $\frac{5}{6}\times2\frac{3}{7}$(v) $3\frac{2}{5}\times\frac{4}{7}$(vi) $2\frac{3}{5}\times3$(vii) $3\frac{4}{7}\times\frac{3}{5}$
- Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- Solve:(i) $3-\frac{2}{5}$(ii) $4+\frac{7}{8}$(iii) $\frac{3}{5}+\frac{2}{7}$(iv) $\frac{9}{11}-\frac{4}{15}$(v) $\frac{7}{10}+\frac{2}{5}+\frac{3}{2}$(vi) $2\frac{2}{3}+3\frac{1}{2}$(vii) $8\frac{1}{2}-3\frac{5}{8}$
- Arrange the given rational number in ascending order.\( \frac{4}{-9}, \frac{-5}{12} \) and \( \frac{2}{-3} \)
- Arrange the following rational numbers in the descending order:$\frac{-3}{10},\ \frac{7}{-15},\ \frac{-11}{20},\ \frac{17}{-30}$.
- Prove that:\( \frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \p \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}=10 \)
- Complete the following:\( -\frac{4}{5} \times \frac{3}{7}+\frac{4}{5} \times \frac{3}{7} \)
Kickstart Your Career
Get certified by completing the course
Get Started