- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
$alpha$ and $beta$ are the zeros of the polynomial $x^2+4x+3$. Then write the polynomial whose zeros are $1+frac{alpha}{beta}$ and $1+frac{beta}{alpha}$.​
Given:$\alpha$ and $\beta$ are the zeros of the polynomial $x^2+4x+3$.
To do: To write the polynomial whose zeros are $1+\frac{\alpha}{\beta}$ and $1+\frac{\beta}{\alpha}$.
​
Solution:
$\because \alpha$ and $\beta$ are the zeros of the quadratic polynomial $x^2+4x+3$
Then, $\alpha+\beta=−4$, $\frac{\alpha}{\beta}=3$
Now, the of sum of the zeros of new polynomial is $=1+\frac{\alpha}{\beta}+1+\frac{\beta}{\alpha}$
$​=\frac{\alpha\beta+\beta^2 +\alpha\beta+\alpha^2}{\alpha\beta}$
$​=\frac{\alpha^2 +\beta^2 +2\alpha\beta}{\alpha\beta}$
$=\frac{( \alpha+\beta)^2}{\alpha\beta}$
$= \frac{(−4)^2}{3}$
$​=\frac{16}{3}$
​
Also, Product of the zeros of new polynomial is
$=2+ \frac{\alpha^2 +\beta^2}{\alpha\beta}$
$=\frac{2\alpha\beta+\alpha^2 +\beta^2}{\alpha\beta}$
$​=\frac{(\alpha+\beta)^2}{\alpha\beta}$
$=\frac{(−4)^2}{3}$
$=\frac{16}{3}$
​
Therefore, the required polynomial is $k\times[x^2−( sum\ of\ the\ zeros)x+product\ of\ zeros]$
$\Rightarrow k\times[x^2− 31x+ 316]$
$\Rightarrow 3\times(x^2 − 316x+ 316 )$ $( if\ k=3)$
- Related Articles
- If $alpha , beta$ are the zeroes of a polynomial, such that $alpha+beta=6$ and $alphabeta=4$, then write the polynomial.
- If $alpha$ and $beta$ are the zeroes of a polynomial such that $alpha+beta=-6$ and $alphabeta=5$, then find the polynomial.
- If $alpha, beta$ are the zeroes of $f( x)=px^2-2x+3p$ and $alpha +beta=alphabeta$, then find the value of $p$.
- If $alpha$ and $beta$ are zeroes of $x^2-4x+1$, then find the value of $frac{1}{alpha}+frac{1}{beta}-alphabeta$.
- If $alpha$ and $beta$ are the zeroes of the polynomial $f(x)=x^2−px+q$, then write the polynomial having $frac{1}{alpha}$ and $frac{1}{beta}$ as its zeroes.
- if $alpha$ and $beta$ are zeroes of polynomial $x^{2}-2x-15$, then form a quadratic polynomial whose zeroes are $2alpha$ and $2beta$.
- If $alpha+beta=-2$ and $alpha^3+beta^3=-56$, then find the quadratic equation whose roots are $alpha$ and $beta$.
- If $alpha$ and $beta$ are zeroes of a quadratic polynomial $4x^{2}+4x+1=0$, then form a quadratic polynomial whose zeroes are $2alpha$ and $2beta$.
- If $alpha$ and $beta$ are zeroes of $p( x)=kx^2+4x+4$, such that $alpha^2+beta^2=24$, find $k$.
- Given $sinalpha=frac{sqrt{3}}{2}$ and $cosbeta=0$, then find the value of $( beta-alpha)$.
- If $alpha$ and $beta$ are the zeroes of the polynomial $ax^2+bx+c$, find the value of $alpha^2+beta^2$.
- If $tanalpha=sqrt{3}$ and $tanbeta=frac{1}{sqrt{3}}, 0ltalpha, betalt 90^{o}$, then find the value of $cot( alpha+beta)$.
- Polynomial ( f(x)=x^{2}-5 x+k ) has zeroes ( alpha ) and ( beta ) such that ( alpha-beta=1 . ) Find the value of ( 4 k ).
- If $alpha, beta$ are the roots of $x^2-px+q=0$, find the value of: $( i). alpha^2+beta^2 ( ii). alpha^3+beta^3$.
- If ( cos (alpha+beta)=0 ), then ( sin (alpha-beta) ) can be reduced to(A) ( cos beta )(B) ( cos 2 beta )(C) ( sin alpha )(D) ( sin 2 alpha )

Advertisements