Add the following monomials:
(i) $ 8 x y, 2 x y, 9 x y $
$ \left(iv{}\right)-40 m n,-30 m n, 18 m n $
i) Given monomials are $8xy, 2xy$ and $9xy$.
To do: We have to find their sum.
Solution:
$8xy+2xy+9xy= xy(8+2+9)$
$=19xy$.
So, $8xy+2xy+9xy=19xy$
ii) Given monomials are $-40mn, -30mn$ and $18mn$.
To do: We have to find their sum.
Solution:
$-40mn+(-30mn)+18mn=mn(-40-30+18)$
$=(-70+18)mn$
$=-52mn$
So, $-40mn+(-30mn)+18mn=-52mn$.
- Related Articles
- If \( x=a^{m+n}, y=a^{n+1} \) and \( z=a^{l+m} \), prove that \( x^{m} y^{n} z^{l}=x^{n} y^{l} z^{m} \)
- If \( a=x^{m+n} y^{l}, b=x^{n+l} y^{m} \) and \( c=x^{l+m} y^{n} \), prove that \( a^{m-n} b^{n-1} c^{l-m}=1 . \)
- Verify : (i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
- Find the sum of the following arithmetic progressions:\( (x-y)^{2},\left(x^{2}+y^{2}\right),(x+y)^{2}, \ldots, \) to \( n \) terms
- Identify the monomials, binomials and trinomials in the following:(i) \( 2 x+y-z \)(ii) \( -2 x^{3} \)(iii) \( -7-p \)(iv) \( 5 x y z \)(v) \( 5-3 y-y^{2} \)(vi) \( m^{2}-1 \)
- Find the following products:\( \left(\frac{x}{2}+2 y\right)\left(\frac{x^{2}}{4}-x y+4 y^{2}\right) \)
- Evaluate each of the following when $x=2, y=-1$.\( (2 x y) \times\left(\frac{x^{2} y}{4}\right) \times\left(x^{2}\right) \times\left(y^{2}\right) \)
- Find the following products:\( \left(\frac{3}{x}-\frac{5}{y}\right)\left(\frac{9}{x^{2}}+\frac{25}{y^{2}}+\frac{15}{x y}\right) \)
- Evaluate each of the following when $x=2, y=-1$.\( \left(\frac{3}{5} x^{2} y\right) \times\left(\frac{-15}{4} x y^{2}\right) \times\left(\frac{7}{9} x^{2} y^{2}\right) \)
- Simplify:\( \sqrt[lm]{\frac{x^{l}}{x^{m}}} \times \sqrt[m n]{\frac{x^{m}}{x^{n}}} \times \sqrt[n l]{\frac{x^{n}}{x^{l}}} \)
- Simplify the following:\( \left(\frac{x^{2} y^{2}}{a^{2} b^{3}}\right)^{n} \)
- The reduced form of $36 x^{2}-81 y^{2}$ isi$(6 x+9 y)(6 x-9 y) $ii$(6 x+9 y)(4 x-5) $iii.$(9 x+6 y)(9 x-6 y)$iv. $(9 y-6 x)(9 y+6 x) $
- Find the following products:\( \frac{-8}{27} x y z\left(\frac{3}{2} x y z^{2}-\frac{9}{4} x y^{2} z^{3}\right) \)
- Find the sum of the following arithmetic progressions:\( \frac{x-y}{x+y}, \frac{3 x-2 y}{x+y}, \frac{5 x-3 y}{x+y}, \ldots \) to \( n \) terms
- Subtract $24 x y-10 y-18 x$ from $30 x y +12 y+14 x$
Kickstart Your Career
Get certified by completing the course
Get Started