$ABCD$ is a parallelogram with vertices $A (x_1, y_1), B (x_2, y_2)$ and $C (x_3, y_3)$. Find the coordinates of the fourth vertex $D$ in terms of $x_1, x_2, x_3, y_1, y_2$ and $y_3$.
Given:
$ABCD$ is a parallelogram with vertices $A (x_1, y_1), B (x_2, y_2)$ and $C (x_3, y_3)$.
To do:
We have to find the fourth vertex $D$ in terms of $x_1, x_2, x_3, y_1, y_2$ and $y_3$.
Solution:
Let the fourth vertex be $D(x,y)$ and the diagonals $AC$ and $BD$ bisect each other at $O$.
This implies,
\( \mathrm{O} \) is the mid-point of \( \mathrm{AC} \).
The coordinates of \( \mathrm{O} \) are \( (\frac{x_1+x_3}{2}, \frac{y_1+y_3}{2}) \)
\( \mathrm{O} \) is the mid-point of \( \mathrm{BD} \).
The coordinates of \( \mathrm{O} \) are \( (\frac{x_2+x}{2}, \frac{y_2+y}{2}) \)
Therefore,
\( (\frac{x_1+x_3}{2}, \frac{y_1+y_3}{2})=(\frac{x_2+x}{2}, \frac{y_2+y}{2}) \)
On comparing, we get,
\( \frac{x_1+x_3}{2}=\frac{x_2+x}{2} \)
\( \Rightarrow x_1+x_3=x_2+x \)
\( \Rightarrow x=x_1+x_3-x_2 \)
Similarly,
\( \frac{y_1+y_3}{2}=\frac{y_2+y}{2} \)
\( \Rightarrow y_1+y_3=y_2+y \)
\( \Rightarrow y=y_1+y_3-y_2 \)
Therefore, the coordinates of the fourth vertex are $(x_1+x_3-x_2, y_1+y_3-y_2)$.
Related Articles The points $A (x_1, y_1), B (x_2, y_2)$ and $C (x_3, y_3)$ are the vertices of $\triangle ABC$.What are the coordinates of the centroid of the triangle ABC?
The points $A (x_1, y_1), B (x_2, y_2)$ and $C (x_3, y_3)$ are the vertices of $\triangle ABC$.The median from $A$ meets $BC$ at $D$. Find the coordinates of the point $D$.
The points $A (x_1, y_1), B (x_2, y_2)$ and $C (x_3, y_3)$ are the vertices of $\triangle ABC$.Find the coordinates of the point $P$ on $AD$ such that $AP : PD = 2 : 1$.
The points $A (x_1, y_1), B (x_2, y_2)$ and $C (x_3, y_3)$ are the vertices of $\triangle ABC$.Find the points of coordinates $Q$ and $R$ on medians $BE$ and $CF$ respectively such that $BQ : QE = 2 : 1$ and $CR : RF = 2 : 1$.
If $M$ is the mean of $x_1, x_2, x_3, x_4, x_5$ and $x_6$, prove that$(x_1 - M) + (x_2 - M) + (x_3 - M) + (x_4 - M) + (x_5 - M) + (x_6 - M) = 0$.
If three points $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ lie on the same line, prove that\( \frac{y_{2}-y_{3}}{x_{2} x_{3}}+\frac{y_{3}-y_{1}}{x_{3} x_{1}}+\frac{y_{1}-y_{2}}{x_{1} x_{2}}=0 \).
If $\overline{X}$ is the mean of the ten natural numbers $x_1, x_2, x_3, …, x_{10}$, show that $(x_1 - \overline{X}) + (x_2 - \overline{X}) + … + (x_{10} - \overline{X}) = 0$.
Let $A(4, 2), B(6,5)$ and $C(1, 4)$ be the vertices of $∆ABC$.(i) The median from $A$ meets $BC$ at $D$. Find the coordinates of the point $D$.(ii) Find the coordinates of the point $P$ on $AD$, such that $AP : PD = 2 : 1$.(iii) Find the coordinates of points $Q$ and $R$ on medians $BE$ and $CF$ respectively, such that $BQ : QE = 2 : 1$ and $CR : RF = 2 : 1$.(iv) What do you observe?[Note: The point which is common to all the three medians is called centroid and this point divides each median in the ratio 2: 1](v) If $A(x_1, y_1), B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of $∆ABC$, find the coordinates of the centroid of the triangles.
If $A( 1,2) ,B( 4,3) $ and $C( 6,\ 6)$ are the three vertices of a parallelogram $ABCD$, find the coordinates of fourth vertices D.
Three vertices of a rectangle ABCD are A(3,1),B(-3,1)andC(-3,3). Plot these points on a graph paper and find the coordinates of the fourth vertex D . Also , find the area of rectangle ABCD.
The fourth vertex \( \mathrm{D} \) of a parallelogram \( \mathrm{ABCD} \) whose three vertices are \( \mathrm{A}(-2,3), \mathrm{B}(6,7) \) and \( \mathrm{C}(8,3) \) is(A) \( (0,1) \)(B) \( (0,-1) \)(C) \( (-1,0) \)(D) \( (1,0) \)
The sums of the deviations of a set of $n$ values $x_1, x_2,… x_n$ measured from $15$ and $-3$ are $-90$ and $54$ respectively. Find the value of $n$ and mean.
The three vertices of a parallelogram are $(3, 4), (3, 8)$ and $(9, 8)$. Find the fourth vertex.
Three vertices of a parallelogram are $(a + b, a – b), (2 a + b, 2a – b), (a – b, a + b)$. Find the fourth vertex.
Three consecutive vertices of a parallelogram are $(-2, -1), (1, 0)$ and $(4, 3)$. Find the fourth vertex.
Kickstart Your Career
Get certified by completing the course
Get Started