- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# A solid metallic right circular cone 20 cm high and whose vertical angle is $60^{o}$, is cut into two parts at the middle of its height by a plane parallel to it base.If the frustum so obtained drawn into a wire of diameter $\frac{1}{12}$cm, find the length of the wire.

**Given:**A solid metallic right circular cone 20 cm high and whose vertical angle is $60^{o}$, is cut into two parts at the middle of its height by a plane parallel to it base. If the frustum so obtained drawn into a wire of diameter $\frac{1}{12}$cm.

**To do:**To find the length of the wire.

**Solution:**

Let ACB be the cone whose vertical angle $\angle ACB = 60^{o} $.

Let $R$ and $x$ be the radii of the lower and upper end of the frustum.

Here, height of the cone, $OC = 20 cm=H$

Height $CP = h = 10\ cm $

Let us consider P as the mid-Point of OC

Cutting the cone into two parts through P.

OP =$\frac{20}{2}= 10\ cm$

Also,$\angle ACO$ and $\angle OCB =$\frac{1}{2} \times 60^{o} =30^{o} $

After cutting cone CQS from cone CBA, the remaining solid obtained is a frustum.

Now, in triangle CPQ

$tan30^{o}=\frac{x}{10}$

$\frac{1}{\sqrt{3}} =\frac{x}{10}$

$\Rightarrow x=\frac{10}{\sqrt{3}}\ cm$

In triangle COB

$tan30^{o}=\frac{R}{20}$

$\Rightarrow \frac{1}{\sqrt{3}} =\frac{R}{20}$

$\Rightarrow R=\frac{20}{\sqrt{3}}$

Volume of the frustum, $V=\frac{1}{3} \pi \left( R^{2} H-x^{2} h\right)$

$\Rightarrow V=\frac{1}{3} \pi \left(\left(\frac{20}{\sqrt{3}}\right)^{2} .20-\left(\frac{10}{\sqrt{3}}\right)^{2} .10\right)$

$\Rightarrow V=\frac{1}{3} \pi \left(\frac{400\times 20}{3} -\frac{100\times 10}{3}\right)$

$\Rightarrow V=\frac{1}{3} \pi \left(\frac{8000-1000}{3}\right)$

$\Rightarrow V=\frac{7000}{9} \pi \ cm^{3}$

Let us assume the length of the wire l.

Given diameter of the wire obtained from the frustum$=\frac{1}{12}\ cm$

Radius of the wire, $r=\frac{1}{2} \times \frac{1}{12} =\frac{1}{24}\ cm$

Volume of the wire$=\pi r^{2} l$

$=\pi \left(\frac{1}{24}\right)^{2} l$

$=\frac{\pi l}{576} cm^{3}$

The volumes of the frustum and the wire formed are equal,

$\frac{7000}{9} \pi =\frac{\pi l}{576}$

$\Rightarrow \frac{7000}{9} =\frac{l}{576}$

$\Rightarrow l=\frac{7000\times 576}{9}$

$\Rightarrow l=448000\ cm$

$\Rightarrow l=4480\ cm$

Therefore, length of the wire is 480 cm.

Advertisements