- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
A solid cylinder has a total surface area of $231\ cm^2$. Its curved surface area is $\frac{2}{3}$ of the total surface area. Find the volume of the cylinder.
Given:
A solid cylinder has a total surface area of $231\ cm^2$. Its curved surface area is $\frac{2}{3}$ of the total surface area.
To do:
We have to find the volume of the cylinder.
Solution:
Surface area of the solid cylinder $= 231\ cm^2$
Curved surface area $=\frac{2}{3}\times231$
$=154 \mathrm{~cm}^{2}$
Therefore,
$2 \pi r h=154$.........(i)
$2 \pi r h+2 \pi r^{2}=231$..........(ii)
Subtracting (i) from (ii), we get,
$2 \pi r^{2}=231-154=77$
$2 \times \frac{22}{7} \times r^{2}=77$
$r^{2}=\frac{77 \times 7}{2 \times 22}$
$=\frac{49}{4}$
$=(\frac{7}{2})^{2}$
$\Rightarrow r=\frac{7}{2} \mathrm{~cm}$
$2 \times \frac{22}{7} \times \frac{7}{2} h=154$
$22 h=154$
$\Rightarrow h=\frac{154}{22}=7\ cm$
Volume of the cylinder $=\pi r^{2} h$
$=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 7$
$=\frac{539}{2}$
$=269.5 \mathrm{~cm}^{3}$