$ A B C D E F $ is a regular hexagon with centre $ O $. If the area of triangle $ O A B $ is 9 $ \mathrm{cm}^{2} $, find the area of the hexagon.
"
Given:
\( A B C D E F \) is a regular hexagon with centre \( O \).
The area of triangle \( O A B \) is 9 \( \mathrm{cm}^{2} \).
To do:
We have to find the area of the hexagon.
Solution:
We get six equal equilateral triangles by joining the vertices of the hexagon with $O$.
Area of the equilateral triangle $OAB = 9\ cm^2$.
This implies,
Area of hexagon $= 9 \times 6\ cm^2$
$= 54\ cm^2$
The area of the hexagon is $54 \mathrm{~cm}^{2}$.
- Related Articles
- \( A B C D E F \) is a regular hexagon with centre \( O \). If the area of triangle \( O A B \) is 9 \( \mathrm{cm}^{2} \), find the area of the circle in which the hexagon is inscribed."\n
- In the below figure, \( O A C B \) is a quadrant of a circle with centre \( O \) and radius \( 3.5 \mathrm{~cm} \). If \( O D=2 \mathrm{~cm} \), find the area of the quadrant \( O A C B \)."\n
- In the below figure, \( O A C B \) is a quadrant of a circle with centre \( O \) and radius \( 3.5 \mathrm{~cm} \). If \( O D=2 \mathrm{~cm} \), find the area of the shaded region."\n
- A regular hexagon is inscribed in a circle. If the area of hexagon is \( 24 \sqrt{3} \mathrm{~cm}^{2} \), find the area of the circle. (Use \( \pi=3.14 \) )
- ABCD is a trapezium in which \( A B \| C D \). The diagonals \( A C \) and \( B D \) intersect at \( O . \) If \( O A=6 \mathrm{~cm}, O C=8 \mathrm{~cm} \) find \( \frac{\text { Area }(\Delta A O B)}{\text { Area }(\Delta C O D)} \).
- ABCD is a trapezium in which \( A B \| C D \). The diagonals \( A C \) and \( B D \) intersect at \( O . \) If \( O A=6 \mathrm{~cm}, O C=8 \mathrm{~cm} \) find \( \frac{\text { Area }(\Delta A O D)}{\text { Area }(\Delta C O D)} \).
- In the below figure, \( O A B C \) is a square of side \( 7 \mathrm{~cm} \). If \( O A P C \) is a quadrant of a circle with centre O, then find the area of the shaded region. (Use \( \pi=22 / 7 \) )"\n
- In the below figure, a square \( O A B C \) is inscribed in a quadrant \( O P B Q \) of a circle. If \( O A=21 \mathrm{~cm} \), find the area of the shaded region."\n
- \( A B \) is a chord of a circle with centre \( O \) and radius \( 4 \mathrm{~cm} . A B \) is of length \( 4 \mathrm{~cm} \). Find the area of the sector of the circle formed by chord \( A B \).
- In the below figure, a square \( O A B C \) is inscribed in a quadrant \( O P B Q \). If \( O A=15 \mathrm{~cm} \), find the area of shaded region (use \( \pi=3.14)."\n
- Find the area of the shaded region in the below figure, if \( A C=24 \mathrm{~cm}, B C=10 \mathrm{~cm} \) and \( O \) is the centre of the circle. (Use \( \pi=3.14) \)"\n
- In the below figure, \( A B C D \) is a trapezium of area \( 24.5 \mathrm{~cm}^{2} . \) In it, \( A D \| B C, \angle D A B=90^{\circ} \), \( A D=10 \mathrm{~cm} \) and \( B C=4 \mathrm{~cm} \). If \( A B E \) is a quadrant of a circle, find the area of the shaded region. (Take \( \pi=22 / 7) \)."\n
- In the figure, \( B C \) is a tangent to the circle with centre \( O \). OE bisects \( A P \). Prove that \( \triangle A E O \sim \triangle A B C \)."\n
- Area of the Largest Triangle inscribed in a Hexagon in C++
- \( A B \) is a chord of a circle with centre \( O \) and radius \( 4 \mathrm{~cm} . A B \) is of length \( 4 \mathrm{~cm} \) and divides the circle into two segments. Find the area of the minor segment.
Kickstart Your Career
Get certified by completing the course
Get Started