- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# A $4\ cm$ cube is cut into $1\ cm$ cubes. Find the total surface area of all small cubes. What is the ratio of the surface area of the smaller cube to that of the larger cube?

**Given:**

**
**

A $4\ cm$ cube is cut into $1\ cm$ cubes.

**
**

**To do:**

**
**

We have to find the total surface area of all the small cubes and the ratio of the surface area of the smaller cube to that of the larger cube.

**
**

**Solution:**

**
**

Volume of $4\ cm$ cube$=(4\ cm)^3=64\ cm^3$

Volume of $1\ cm$ cube$=(1\ cm)^3=1\ cm^3$

Total number of $1\ cm$ cubes$=\frac{Volume\ of\ 4\ cm\ cube}{Volume\ of\ 1\ cm\ cube}$

$=\frac{64}{1}=64$

Total surface area of a cube of side $s$ is $6s^2$.

Total surface area of $1$ small cube$=6(1\ cm)^2=6\ cm^2$

Total surface area of $64$ small cube$=64\times6\ cm^2=384\ cm^2$

Total surface area of the large cube$=6(4\ cm)^2=6\times16\ cm^2=96\ cm^2$

The ratio of the surface area of the smaller cube to that of the larger cube$=6:96=1:16$.