- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
A $ 1.6 \mathrm{~m} $ tall girl stands at a distance of $ 3.2 \mathrm{~m} $ from a lamp-post and casts a shadow of $ 4.8 $ m on the ground. Find the height of the lamp-post by using trigonometric ratios.
Given:
A \( 1.6 \mathrm{~m} \) tall girl stands at a distance of \( 3.2 \mathrm{~m} \) from a lamp-post and casts a shadow of \( 4.8 \) m on the ground.
To do:
We have to find the height of the lamp-post by using trigonometric ratios.
Solution:
Let $AB$ be the girl and $CD$ be the height of the lamp post.
Let $AE$ be the shadow of the girl.
From the figure,
$\mathrm{AC}=3.2 \mathrm{~m}, \mathrm{AE}=4.8 \mathrm{~m}$
Let the height of the lamp post be $\mathrm{DC}=h \mathrm{~m}$.
We know that,
$\tan\ BEA =\frac{\text { Opposite }}{\text { Adjacent }}$
$=\frac{\text { BA }}{EA}$
$=\frac{1.6}{4.8}$
$=\frac{1}{3}$.......(i)
Similarly,
$\tan\ DEC=\tan\ BEA=\frac{\text { Opposite }}{\text { Adjacent }}$
$=\frac{\text { DC }}{EC}$
$=\frac{h}{4.8+3.2}$
$=\frac{h}{8}$.........(ii)
From (i) and (ii), we get,
$\frac{1}{3}=\frac{h}{8}$
$\Rightarrow h=\frac{8}{3} \mathrm{~m}$
Therefore, the height of the lamp-post is $\frac{8}{3} \mathrm{~m}$.