1/2+2/8+1/4
Given: $\frac{1}{2} \ +\ \frac{2}{8} \ +\ \frac{1}{4} \ $
To find: We have to find the value of $\frac{1}{2} \ +\ \frac{2}{8} \ +\ \frac{1}{4} \ $
Solution:
$\frac{1}{2} \ +\ \frac{2}{8} \ +\ \frac{1}{4} \ $
$=\ \frac{1}{2} \ +\ \frac{1}{4} \ +\ \frac{1}{4} \ $
$= \ \frac{1}{2} \ +\ \frac{1}{2}$
$=\ 1$
- Related Articles
- Observe the following pattern\( 1^{2}=\frac{1}{6}[1 \times(1+1) \times(2 \times 1)+1)] \)\( 1^{2}+2^{2}=\frac{1}{6}[2 \times(2+1) \times(2 \times 2)+1)] \)\( 1^{2}+2^{2}+3^{2}=\frac{1}{6}[3 \times(3+1) \times(2 \times 3)+1)] \)\( 1^{2}+2^{2}+3^{2}+4^{2}=\frac{1}{6}[4 \times(4+1) \times(2 \times 4)+1)] \)and find the values of each of the following:(i) $1^2 + 2^2 + 3^2 + 4^2 +…………… + 10^2$(ii)$5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2$
- Sum of the series 1 + (1+2) + (1+2+3) + (1+2+3+4) + ... + (1+2+3+4+...+n) in C++
- Observe the following pattern$1=\frac{1}{2}\{1 \times(1+1)\}$$1+2=\frac{1}{2}\{2 \times(2+1)\}$$1+2+3=\frac{1}{2}\{3 \times(3+1)\}$$1+2+3+4=\frac{1}{2}\{4 \times(4+1)\}$and find the values of each of the following:(i) $1 + 2 + 3 + 4 + 5 +….. + 50$(ii)$31 + 32 +… + 50$
- C++ program to find nth Term of the Series 1 2 2 4 4 4 4 8 8 8 8 8 8 8 8 …
- Solve $7\frac{1}{3}\div \frac{2}{3}$ of $2\frac{1}{5}+1\frac{3}{8}\div 2\frac{3}{4}-1 \frac{1}{2}$.
- Simplify (i) +7 + 1 - 3 + 4 -2 - 5 + 7 - 2 + 1 -6 + 5(ii)+2 - 3 + 2 -5 + 1 - 3 + 8 - 4 + 3
- Simplify: $-\frac{1}{2}a^{2}b^{2}c+\frac{1}{3}ab^{2}c-\frac{1}{4}abc^{2}-\frac{1}{5}cb^{2}a^{2}+\frac{1}{6}cb^{2}a-\frac{1}{7}c^{2}ab+\frac{1}{8}ca^{2}b$.
- Solve: $6\frac{1}{2} +1\frac{1}{2}( 1-2x) =-4$.
- Which of the following is the correct electronic configuration of sodium?(a) 2, 8, 1 (b) 8, 2, 1 (c) 2, 1, 8 (d) 2, 8, 2
- Find x: \( 4^{x-2}+2 \times 2^{2 x-1}=1 \frac{1}{16} \)
- Solve the following:$\frac{4 x-5}{8 x - 1}$=$ \frac{x+2}{2 x+1}$
- Evaluate: $(6-1 - 8-1)-1 + (2-1-3-1)-1$.
- Find the value of:$\left(\frac{3}{4}\ +\ \frac{1}{4}\right)\ \div\ 2\frac{1}{2}\ -\ \left(\frac{2}{3}\ \times\ \frac{7}{8}\right)\ \div\ 1\frac{1}{4}$
- Following data gives the number of children in 41 families:$1, 2, 6, 5, 1, 5, 1, 3, 2, 6, 2, 3, 4, 2, 0, 0, 4, 4, 3, 2, 2, 0, 0, 1, 2, 2, 4, 3, 2, 1, 0, 5, 1, 2, 4, 3, 4, 1, 6, 2, 2.$Represent it in the form of a frequency distribution.
- Solve for x:$\frac{1}{x+1} +\frac{2}{x+2} =\frac{4}{x+4} ;\ x\neq -1,\ -2,\ -4$
Kickstart Your Career
Get certified by completing the course
Get Started