OBJECTIVE-C - POINTER ARITHMETIC

As explained in main chapter, Objective-C pointer is an address, which is a numeric value.
Therefore, you can perform arithmetic operations on a pointer just as you can on a numeric value.
There are four arithmetic operators that can be used on pointers: ++, --, +, and -

To understand pointer arithmetic, let us consider that ptr is an integer pointer, which points to the
address 1000. Assuming 32-bit integers, let us perform the following arithmetic operation on the
pointer:

ptr++

Now, after the above operation, the ptr will point to the location 1004 because each time ptr is
incremented, it will point to the next integer location, which is 4 bytes next to the current location.
This operation will move the pointer to next memory location without impacting actual value at the
memory location. If ptr points to a character whose address is 1000, then above operation will
point to the location 1001 because next character will be available at 1001.

Incrementing a Pointer

We prefer using a pointer in our program instead of an array because the variable pointer can be
incremented, unlike the array name which cannot be incremented because itis a constant pointer.
The following program increments the variable pointer to access each succeeding element of the
array:

#import <Foundation/Foundation.h>

const int MAX = 3;

int main ()

{
int wvar[] = {10, 100, 200};
int i, *ptr;
/* let us have array address in pointer */
ptr = var;
for (1 =0; i < MAX; i++)
{
NSLog(@"Address of var[%d] = %x\n", i, ptr);
NSLog(@"Value of var[%d] = %d\n", i, *ptr);
/* move to the next location */
ptr++;
}
return 0;
}

When the above code is compiled and executed, it produces result something as follows:

2013-09-14
2013-09-14
2013-09-14
2013-09-14
2013-09-14
2013-09-14

00
00
00
00
00
00

108
108
108
108
108
:08

:36
:36
:36
136
136
:36

.215
.216
.216
.216
.216
.216

demo[32000]
demo[32000]
demo[32000]
demo[32000]
demo[32000]
demo[32000]

Decrementing a Pointer

Address of var[0] = 7e6f2a70
Value of var[0] = 10
Address of var[1] = 7e6f2a74
Value of var[1] = 100
Address of var[2] = 7e6f2a78
Value of var[2] = 200

The same considerations apply to decrementing a pointer, which decreases its value by the
number of bytes of its data type as shown below:

http://www.tutorialspoint.com/objective_c/objective_c_pointer_arithmetic.htm

#import <Foundation/Foundation.h>
const int MAX = 3;

int main ()

{
int wvar[] = {10, 100, 200};
int i, *ptr;
/* let us have array address in pointer */
ptr = &var[MAX-1];
for (1 =MAX; i > 0; i--)
{
NSLog(@"Address of var[%d] = %x\n", i, ptr);
NSLog(@"Value of var[%d] = %d\n", i, *ptr);
/* move to the previous location */
ptr--;
}
return 0;
}

When the above code is compiled and executed, it produces result something as follows:

2013-09-14 00:12:22.783 demo[13055] Address of var[3] = ead4c618
2013-09-14 00:12:22.783 demo[13055] Value of var[3] = 200
2013-09-14 00:12:22.783 demo[13055] Address of var[2] = ea4c614
2013-09-14 00:12:22.783 demo[13055] Value of var[2] = 100
2013-09-14 00:12:22.783 demo[13055] Address of var[1l] = ead4c610
2013-09-14 00:12:22.783 demo[13055] Value of var[1] = 10

Pointer Comparisons

Pointers may be compared by using relational operators, such as ==, <, and >. If pl and p2 point
to variables that are related to each other, such as elements of the same array, then pl and p2
can be meaningfully compared.

The following program modifies the previous example one by incrementing the variable pointer so
long as the address to which it points is either less than or equal to the address of the last element
of the array, which is &var[MAX - 11

#import <Foundation/Foundation.h>
const int MAX = 3;

int main ()

{
int var[] = {10, 100, 200};
int i, *ptr;

/* let us have address of the first element in pointer */
ptr = var;

i=0;

while (ptr <= &var[MAX - 1])

{

NSLog(@"Address of var[%d] = %x\n", i, ptr);
NSLog(@"Value of var[%d] = %d\n", i, *ptr);

/* point to the previous location */

ptr++;
i++;

}

return 0;

When the above code is compiled and executed, it produces result something as follows:

2013-09-14
2013-09-14
2013-09-14
2013-09-14
2013-09-14
2013-09-14

00
00
00
00
00
00

;15
115
LS
115
115
115

149
149
149
149
149
149

.976
.976
977
977
977
977

demo[24825]
demo[24825]
demo[24825]
demo[24825]
demo[24825]
demo[24825]

Address of var[0] =
Value of var[0] = 10
Address of var[1] = ael235a4
Value of var[1] = 100
Address of var[2] = ael235a8
Value of var[2] = 200

ael235a0

