
http://www.tutorialspoint.com/objective_c/objective_c_classes_objects.htm Copyright © tutorialspoint.com

OBJECTIVE-C CLASSES & OBJECTSOBJECTIVE-C CLASSES & OBJECTS

The main purpose of Objective-C programming language is to add object orientation to the C
programming language and classes are the central feature of Objective-C that support object-
oriented programming and are often called user-defined types.

A class is used to specify the form of an object and it combines data representation and methods
for manipulating that data into one neat package. The data and methods within a class are called
members of the class.

Objective-C characteristics
The class is defined in two different sections namely @interface and @implementation.

Almost everything is in form of objects.

Objects receive messages and objects are often referred as receivers.

Objects contain instance variables.

Objects and instance variables have scope.

Classes hide an object's implementation.

Properties are used to provide access to class instance variables in other classes.

Objective-C Class Definitions:
When you define a class, you define a blueprint for a data type. This doesn't actually define any
data, but it does define what the class name means, that is, what an object of the class will consist
of and what operations can be performed on such an object.

A class definition starts with the keyword @interface followed by the interfaceclass name; and the
class body, enclosed by a pair of curly braces. In Objective-C, all classes are derived from the base
class called NSObject. It is the superclass of all Objective-C classes. It provides basic methods like
memory allocation and initialization. For example, we defined the Box data type using the keyword
class as follows:

@interface Box:NSObject
{
 //Instance variables
 double length; // Length of a box
 double breadth; // Breadth of a box
}
@property(nonatomic, readwrite) double height; // Property

@end

The instance variables are private and are only accessible inside the class implementation.

Allocating and initializing Objective-C Objects:
A class provides the blueprints for objects, so basically an object is created from a class. We
declare objects of a class with exactly the same sort of declaration that we declare variables of
basic types. Following statements declare two objects of class Box:

Box box1 = [[Box alloc]init]; // Create box1 object of type Box
Box box2 = [[Box alloc]init]; // Create box2 object of type Box

Both of the objects box1 and box2 will have their own copy of data members.

Accessing the Data Members:

http://www.tutorialspoint.com/objective_c/objective_c_classes_objects.htm

The properties of objects of a class can be accessed using the direct member access operator . .
Let us try the following example to make things clear:

#import <Foundation/Foundation.h>

@interface Box:NSObject
{
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
}
@property(nonatomic, readwrite) double height; // Property

-(double) volume;

@end

@implementation Box

@synthesize height;

-(id)init
{
 self = [super init];
 length = 1.0;
 breadth = 1.0;
 return self;
}

-(double) volume
{
 return length*breadth*height;
}

@end

int main()
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 Box *box1 = [[Box alloc]init]; // Create box1 object of type Box
 Box *box2 = [[Box alloc]init]; // Create box2 object of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification
 box1.height = 5.0;

 // box 2 specification
 box2.height = 10.0;

 // volume of box 1
 volume = [box1 volume];
 NSLog(@"Volume of Box1 : %f", volume);
 // volume of box 2
 volume = [box2 volume];
 NSLog(@"Volume of Box2 : %f", volume);
 [pool drain];
 return 0;
}

When the above code is compiled and executed, it produces the following result:

2013-09-22 21:25:33.314 ClassAndObjects[387:303] Volume of Box1 : 5.000000
2013-09-22 21:25:33.316 ClassAndObjects[387:303] Volume of Box2 : 10.000000

Properties:

Properties are introduced in Objective-C to ensure that the instance variable of the class can be
accessed outside the class.

The various parts are the property declaration are as follows.

Properties begin with @property, which is a keyword

It is followed with access specifiers, which are nonatomic or atomic, readwrite or readonly
and strong, unsafe_unretained or weak. This varies based on the type of the variable. For any
pointer type, we can use strong, unsafe_unretained or weak. Similarly for other types we can
use readwrite or readonly.

This is followed by the datatype of the variable.

Finally, we have the property name terminated by a semicolon.

We can add synthesize statement in the implementation class. But in the latest XCode, the
synthesis part is taken care by the XCode and you need not include synthesize statement.

It is only possible with the properties we can access the instance variables of the class. Actually,
internally getter and setter methods are created for the properties.

For example, let's assume we have a property @property nonatomic, readonly BOOL isDone. Under
the hood, there are setters and getters created as shown below.

-(void)setIsDone(BOOL)isDone;
-(BOOL)isDone;

Loading [MathJax]/jax/output/HTML-CSS/jax.js

