
http://www.tutorialspoint.com/mongodb/mongodb_aggregation.htm Copyright © tutorialspoint.com

MONGODB - AGGREGATIONMONGODB - AGGREGATION

Aggregations operations process data records and return computed results. Aggregation
operations group values from multiple documents together, and can perform a variety of
operations on the grouped data to return a single result. In sql count∗ and with group by is an
equivalent of mongodb aggregation.

The aggregate Method
For the aggregation in mongodb you should use aggregate method.

Syntax:
Basic syntax of aggregate method is as follows

>db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION)

Example:
In the collection you have the following data:

{
 _id: ObjectId(7df78ad8902c)
 title: 'MongoDB Overview',
 description: 'MongoDB is no sql database',
 by_user: 'tutorials point',
 url: 'http://www.tutorialspoint.com',
 tags: ['mongodb', 'database', 'NoSQL'],
 likes: 100
},
{
 _id: ObjectId(7df78ad8902d)
 title: 'NoSQL Overview',
 description: 'No sql database is very fast',
 by_user: 'tutorials point',
 url: 'http://www.tutorialspoint.com',
 tags: ['mongodb', 'database', 'NoSQL'],
 likes: 10
},
{
 _id: ObjectId(7df78ad8902e)
 title: 'Neo4j Overview',
 description: 'Neo4j is no sql database',
 by_user: 'Neo4j',
 url: 'http://www.neo4j.com',
 tags: ['neo4j', 'database', 'NoSQL'],
 likes: 750
},

Now from the above collection if you want to display a list that how many tutorials are written by
each user then you will use aggregate method as shown below:

> db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : 1}}}])
{
 "result" : [
 {
 "_id" : "tutorials point",
 "num_tutorial" : 2
 },
 {
 "_id" : "Neo4j",
 "num_tutorial" : 1

http://www.tutorialspoint.com/mongodb/mongodb_aggregation.htm

 }
],
 "ok" : 1
}
>

Sql equivalent query for the above use case will be select by_user, count ∗ from mycol group
by by_user

In the above example we have grouped documents by field by_user and on each occurance of
by_user previous value of sum is incremented. There is a list available aggregation expressions.

Expression Description Example

$sum Sums up the defined value from all
documents in the collection.

db.mycol.aggregate
[$group: id:" $byuser " , numtutorial: $sum:" $likes "]

$avg Calculates the average of all given
values from all documents in the
collection.

db.mycol.aggregate
[$group: id:" $byuser " , numtutorial: $avg:" $likes "]

$min Gets the minimum of the
corresponding values from all
documents in the collection.

db.mycol.aggregate
[$group: id:" $byuser " , numtutorial: $min:" $likes "]

$max Gets the maximum of the
corresponding values from all
documents in the collection.

db.mycol.aggregate
[$group: id:" $byuser " , numtutorial: $max:" $likes "]

$push Inserts the value to an array in the
resulting document.

db.mycol.aggregate
[$group: id:" $byuser " , url: $push:" $url "]

$addToSet Inserts the value to an array in the
resulting document but does not
create duplicates.

db.mycol.aggregate
[$group: id:" $byuser " , url: $addToSet:" $url "]

$first Gets the first document from the
source documents according to the
grouping. Typically this makes only
sense together with some previously
applied “$sort”-stage.

db.mycol.aggregate
[$group: id:" $byuser " , firsturl: $first:" $url "]

$last Gets the last document from the
source documents according to the
grouping. Typically this makes only
sense together with some previously
applied “$sort”-stage.

db.mycol.aggregate
[$group: id:" $byuser " , lasturl: $last:" $url "]

Pipeline Concept
In UNIX command shell pipeline means the possibility to execute an operation on some input and
use the output as the input for the next command and so on. MongoDB also support same concept
in aggregation framework. There is a set of possible stages and each of those is taken a set of
documents as an input and is producing a resulting set of documents
orthefinalresultingJSONdocumentattheendofthepipeline. This can then in turn again be used for the next stage
an so on.

Possible stages in aggregation framework are following:

$project: Used to select some specific fields from a collection.
$match: This is a filtering operation and thus this can reduce the amount of documents that
are given as input to the next stage.

$group: This does the actual aggregation as discussed above.
$sort: Sorts the documents.
$skip: With this it is possible to skip forward in the list of documents for a given amount of
documents.
$limit: This limits the amount of documents to look at by the given number starting from the
current position.s
$unwind: This is used to unwind document that are using arrays. when using an array the
data is kind of pre-joinded and this operation will be undone with this to have individual
documents again. Thus with this stage we will increase the amount of documents for the next
stage.

Processing math: 100%

