

MATLAB - TRANSFORMS

MATLAB provides command for working with transforms, such as the Laplace and Fourier transforms. Transforms are used in science and engineering as a tool for simplifying analysis and look at data from another angle.

For example, the Fourier transform allows us to convert a signal represented as a function of time to a function of frequency. Laplace transform allows us to convert a differential equation to an algebraic equation.

MATLAB provides the **laplace**, **fourier** and **fft** commands to work with Laplace, Fourier and Fast Fourier transforms.

The Laplace Transform

The Laplace transform of a function of time f_t is given by the following integral –

$$L\{f(t)\} = \int_0^{\infty} f(t) \cdot e^{-st} dt$$

Laplace transform is also denoted as transform of f_t to F_s . You can see this transform or integration process converts f_t , a function of the symbolic variable t , into another function F_s , with another variable s .

Laplace transform turns differential equations into algebraic ones. To compute a Laplace transform of a function f_t , write –

```
laplace(f(t))
```

Example

In this example, we will compute the Laplace transform of some commonly used functions.

Create a script file and type the following code –

```
syms s t a b w
laplace(a)
laplace(t^2)
laplace(t^9)
laplace(exp(-b*t))
laplace(sin(w*t))
laplace(cos(w*t))
```

When you run the file, it displays the following result –

```
ans =
1/s^2

ans =
2/s^3

ans =
362880/s^10

ans =
1/(b + s)

ans =
w/(s^2 + w^2)

ans =
```

```
s/(s^2 + w^2)
```

The Inverse Laplace Transform

MATLAB allows us to compute the inverse Laplace transform using the command **ilaplace**.

For example,

```
ilaplace(1/s^3)
```

MATLAB will execute the above statement and display the result –

```
ans =  
t^2/2
```

Example

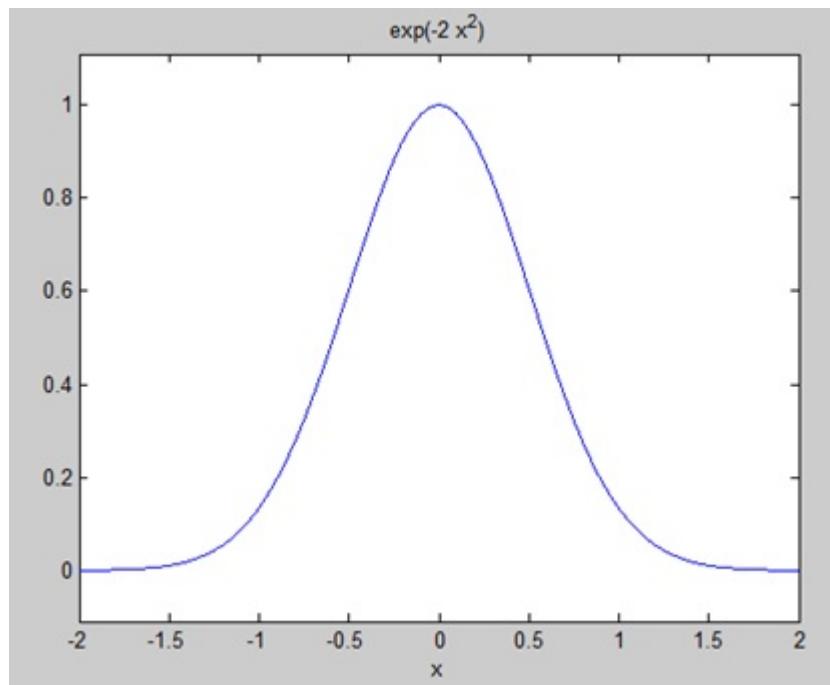
Create a script file and type the following code –

```
syms s t a b w  
ilaplace(1/s^7)  
ilaplace(2/(w+s))  
ilaplace(s/(s^2+4))  
ilaplace(exp(-b*t))  
ilaplace(w/(s^2 + w^2))  
ilaplace(s/(s^2 + w^2))
```

When you run the file, it displays the following result –

```
ans =  
t^6/720  
  
ans =  
2*exp(-t*w)  
  
ans =  
cos(2*t)  
  
ans =  
ilaplace(exp(-b*t), t, x)  
  
ans =  
sin(t*w)  
  
ans =  
cos(t*w)
```

The Fourier Transforms

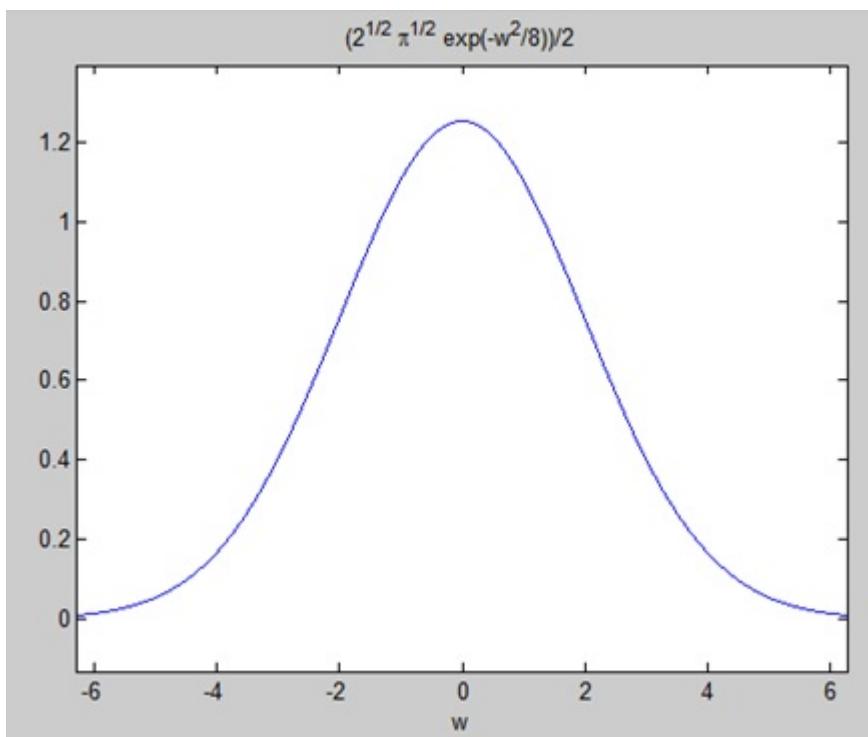

Fourier transforms commonly transforms a mathematical function of time, f_t , into a new function, sometimes denoted by F , whose argument is frequency with units of cycles/s *hertz* or radians per second. The new function is then known as the Fourier transform and/or the frequency spectrum of the function f .

Example

Create a script file and type the following code in it –

```
syms x  
f = exp(-2*x^2); %our function  
ezplot(f, [-2, 2]) % plot of our function  
FT = fourier(f) % Fourier transform
```

When you run the file, MATLAB plots the following graph –


The following result is displayed –

```
FT =
(2^(1/2)*pi^(1/2)*exp(-w^2/8))/2
```

Plotting the Fourier transform as –

```
ezplot(FT)
```

Gives the following graph –

Inverse Fourier Transforms

MATLAB provides the **ifourier** command for computing the inverse Fourier transform of a function. For example,

```
f = ifourier(-2*exp(-abs(w)))
```

MATLAB will execute the above statement and display the result –

```
f =  
-2/(n1*(x^2 + 1))
```

Loading [MathJax]/jax/output/HTML-CSS/jax.js