MATLAB - QUICK GUIDE

MATLAB - OVERVIEW

MATLAB (matrix laboratory) is a fourth-generation high-level programming language and
interactive environment for numerical computation, visualization and programming.

MATLAB is developed by MathWorks.

It allows matrix manipulations; plotting of functions and data; implementation of algorithms;
creation of user interfaces; interfacing with programs written in other languages, including C,
C++, Java, and FORTRAN; analyze data; develop algorithms; and create models and applications.

It has numerous built-in commands and math functions that help you in mathematical calculations,
generating plots, and performing numerical methods.

MATLAB's Power of Computational Mathematics

MATLAB is used in every facet of computational mathematics. Following are some commonly used
mathematical calculations where it is used most commonly —

e Dealing with Matrices and Arrays
¢ 2-D and 3-D Plotting and graphics
e Linear Algebra

e Algebraic Equations

¢ Non-linear Functions

e Statistics

e Data Analysis

e Calculus and Differential Equations
e Numerical Calculations

¢ Integration

e Transforms

e Curve Fitting

e Various other special functions
Features of MATLAB

Following are the basic features of MATLAB —

e Itis a high-level language for numerical computation, visualization and application
development.

e |talso provides an interactive environment for iterative exploration, design and problem
solving.

e It provides vast library of mathematical functions for linear algebra, statistics, Fourier
analysis, filtering, optimization, numerical integration and solving ordinary differential
equations.

e It provides built-in graphics for visualizing data and tools for creating custom plots.

e MATLAB's programming interface gives development tools for improving code quality
maintainability and maximizing performance.

http://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

e It provides tools for building applications with custom graphical interfaces.

e It provides functions for integrating MATLAB based algorithms with external applications and
languages such as C, Java, .NET and Microsoft Excel.

Uses of MATLAB

MATLAB is widely used as a computational tool in science and engineering encompassing the
fields of physics, chemistry, math and all engineering streams. It is used in a range of applications
including —

¢ Signal Processing and Communications

Image and Video Processing

Control Systems

Test and Measurement

Computational Finance

Computational Biology

MATLAB - ENVIRONMENT SETUP

Local Environment Setup

Setting up MATLAB environment is a matter of few clicks. The installer can be downloaded from
here —

MathWorks provides the licensed product, a trial version and a student version as well. You need to
log into the site and wait a little for their approval.

After downloading the installer the software can be installed through few clicks.

[4\ MathWorks Instailer = | (&)
Install MathWorks Software e
MATLAB
This program wall install MathWorks products on your computer. You may also be required to Si MULINK"

actraate your software.

0 [nstall using the Intemed t Connection Settings R2013a
Install without using the Intemet

MathWorks products are protected by patents (see www.mathworks.com/patents) and copynght
laws. By entenng into the Software License Agreement that follows, you will slie sgree to
additional restrictions on your use of these programs. Any unauthorized use, reproduction, or
distribution may result in covil and criminal penaltses,

MATLAE and Ssmubink are regstered trademarks of The MathWarks, Inc. Please see
wivamathworks.com/trademarks for a st of additional trademarks. Other product or brand
namies may be trademarks or registered trademarks of their respective holders.

ETE T) MathWorks

[4\ 1% Compiete =ufel=)

Installing MATLAB 8.1 About 40 minutes remaming

https://www.mathworks.com/downloads/web_downloads/

<) MathWorks

Understanding the MATLAB Environment

MATLAB development IDE can be launched from the icon created on the desktop. The main
working window in MATLAB is called the desktop. When MATLAB is started, the desktop appearsin
its default layout —

Farack,

The desktop has the following panels —

e Current Folder — This panel allows you to access the project folders and files.

Current Folder]

| Mame =

Fry'sCr
test
my_data.out

F =

| S|
|| my_data2.out

e Command Window — This is the main area where commands can be entered at the
command line. Itis indicated by the command prompt (>>).

Command Window

> a=23

a3

Jx »»

e Workspace — The workspace shows all the variables created and/or imported from files.

Workspace

Mame Yalue
H 23
HH b 69

¢ Command History — This panel shows or rerun commands that are entered at the
command line.

wn

Set up GNU Octave

If you are willing to use Octave on your machine (Linux, BSD, OS X or Windows), then kindly
download latest version from Download GNU Octave. You can check the given installation
instructions for your machine.

MATLAB - BASIC SYNTAX

MATLAB environment behaves like a super-complex calculator. You can enter commands at the
>> command prompt.

http://www.gnu.org/software/octave/download.html

MATLAB is an interpreted environment. In other words, you give a command and MATLAB
executes it right away.

Hands on Practice

Type a valid expression, for example,

And press ENTER

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result
returned is —

ans = 10

Let us take up few more examples —

3 N2 % 3 raised to the power of 2

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result
returned is —

ans = 9

Another example,

sin(pi /2) % sine of angle 90°

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result
returned is —

ans = 1

Another example,

7/0 % Divide by zero

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result
returned is —

ans = Inf
warning: division by zero

Another example,

732 * 20.3

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result
returned is —

ans = 1.4860e+04

MATLAB provides some special expressions for some mathematical symbols, like pi for m, Inf for «,
i (and j) for V-1 etc. Nan stands for 'not a number'.

Use of Semicolon (;) in MATLAB

Semicolon (;) indicates end of statement. However, if you want to suppress and hide the MATLAB
output for an expression, add a semicolon after the expression.

For example,

X
y

3;
X + 5

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result
returned is —

y = 8

Adding Comments

The percent symbol (%) is used for indicating a comment line. For example,
X =9 % assign the value 9 to X

You can also write a block of comments using the block comment operators % { and % }.

The MATLAB editor includes tools and context menu items to help you add, remove, or change the
format of comments.

Commonly used Operators and Special Characters

MATLAB supports the following commonly used operators and special characters —

Operator Purpose
+ Plus; addition operator.

- Minus; subtraction operator.

* Scalar and matrix multiplication operator.
K Array multiplication operator.

~ Scalar and matrix exponentiation operator.
e Array exponentiation operator.

\ Left-division operator.

/ Right-division operator.

A\ Array left-division operator.

./ Array right-division operator.

Colon; generates regularly spaced elements and represents an entire
row or column.

() Parentheses; encloses function arguments and array indices; overrides
precedence.
[1 Brackets; enclosures array elements.

Decimal point.
Ellipsis; line-continuation operator

’ Comma; separates statements and elements in a row

; Semicolon; separates columns and suppresses display.

% Percent sign; designates a comment and specifies formatting.
Quote sign and transpose operator.

Nonconjugated transpose operator.

= Assignment operator.

Special Variables and Constants

MATLAB supports the following special variables and constants:

Name Meaning

ans Most recent answer.

eps Accuracy of floating-point precision.

i,j The imaginary unit v-1.

Inf Infinity.

NaN Undefined numerical result (not a number).
pi The numbern

Naming Variables
Variable names consist of a letter followed by any number of letters, digits or underscore.
MATLAB is case-sensitive.

Variable names can be of any length, however, MATLAB uses only first N characters, where N is
given by the function namelengthmax.

Saving Your Work

The save command is used for saving all the variables in the workspace, as a file with .mat
extension, in the current directory.

For example,
save myfile
You can reload the file anytime later using the load command.

load myfile

MATLAB - VARIABLES

In MATLAB environment, every variable is an array or matrix.

You can assign variables in a simple way. For example,

X =3 % defining x and initializing it with a value

MATLAB will execute the above statement and return the following result —

It creates a 1-by-1 matrix named x and stores the value 3 in its element. Let us check another
example,

X = sqrt(16) % defining x and initializing it with an expression
MATLAB will execute the above statement and return the following result —
X = 4
Please note that —

e Once a variable is entered into the system, you can refer to it later.

e Variables must have values before they are used.

¢ When an expression returns a result that is not assigned to any variable, the system assigns it
to a variable named ans, which can be used later.

For example,

sqrt(78)
MATLAB will execute the above statement and return the following result —

ans = 8.8318

You can use this variable ans —

sqrt(78);
9876/ans

MATLAB will execute the above statement and return the following result —

ans = 1118.2

Let's look at another example —

X
y

7 * 8;
X * 7.89

MATLAB will execute the above statement and return the following result —

y = 441.84

Multiple Assignments

You can have multiple assignments on the same line. For example,

a=2,b=7,c=a*hb
MATLAB will execute the above statement and return the following result —
c = 14

| have forgotten the Variables!

The who command displays all the variable names you have used.

who

MATLAB will execute the above statement and return the following result —

Your variables are:
a ans b c

The whos command displays little more about the variables —

Variables currently in memory

Type of each variables

Memory allocated to each variable

Whether they are complex variables or not

whos

MATLAB will execute the above statement and return the following result —

Attr Name Size Bytes Class
a 1x1 8 double
ans 1xX70 757 cell
b 1x1 8 double
(o 1x1 8 double

Total is 73 elements using 781 bytes

The clear command deletes all (or the specified) variable(s) from the memory.

clear x % it will delete x, won't display anything
clear % it will delete all variables in the workspace
% peacefully and unobtrusively

Long Assignments

Long assignments can be extended to another line by using an ellipses (...). For example,
initial_velocity O

acceleration = 9
time = 20;
final_velocity = initial_velocity + acceleration * time

.8;

MATLAB will execute the above statement and return the following result —

final_velocity = 196

The format Command

By default, MATLAB displays numbers with four decimal place values. This is known as short
format.

However, if you want more precision, you need to use the format command.
The format long command displays 16 digits after decimal.

For example —

format long
X =7 +10/3 + 5 N 1.2

MATLAB will execute the above statement and return the following result—

X = 17.2319816406394

Another example,

format short
X =7 +10/3 + 5 A 1.2

MATLAB will execute the above statement and return the following result —

X = 17.232

The format bank command rounds numbers to two decimal places. For example,

format bank
daily_wage = 177.45;
weekly_wage = daily_wage * 6

MATLAB will execute the above statement and return the following result —
weekly_wage = 1064.70

MATLAB displays large numbers using exponential notation.

The format short e command allows displaying in exponential form with four decimal places plus
the exponent.

For example,

format short e
4.678 * 4.9

MATLAB will execute the above statement and return the following result —

ans = 2.2922e+01

The format long e command allows displaying in exponential form with four decimal places plus
the exponent. For example,

format long e
X = pi

MATLAB will execute the above statement and return the following result —

X = 3.141592653589793e+00

The format rat command gives the closest rational expression resulting from a calculation. For
example,

format rat
4.678 * 4.9

MATLAB will execute the above statement and return the following result —

ans = 34177/1491

Creating Vectors
A vector is a one-dimensional array of numbers. MATLAB allows creating two types of vectors:

e Row vectors

e Column vectors

Row vectors are created by enclosing the set of elements in square brackets, using space or
comma to delimit the elements.

For example,

r=10[789 10 11]

MATLAB will execute the above statement and return the following result —

Another example,

8 9 10 11];
3, 4, 5, 6];
+

MATLAB will execute the above statement and return the following result —

res =

9 11 13 15 17

Column vectors are created by enclosing the set of elements in square brackets, using
semicolon(;) to delimit the elements.

c =1[7;, 8;, 9; 10; 11]

MATLAB will execute the above statement and return the following result —

(RN
R o oo

Creating Matrices
A matrix is a two-dimensional array of numbers.

In MATLAB, a matrix is created by entering each row as a sequence of space or comma separated
elements, and end of a row is demarcated by a semicolon. For example, let us create a 3-by-3
matrix as:

m=1[123; 456; 7 8 9]
MATLAB will execute the above statement and return the following result —

m =

1 2 3
4 5 6
7 8 9

MATLAB - COMMANDS

MATLAB is an interactive program for numerical computation and data visualization. You can
enter a command by typing it at the MATLAB prompt '>>"' on the Command Window.

In this section, we will provide lists of commonly used general MATLAB commands.
Commands for Managing a Session

MATLAB provides various commands for managing a session. The following table provides all such
commands —

Command Purpose

clc Clears command window.

clear Removes variables from memory.
exist Checks for existence of file or variable.
global Declares variables to be global.

help Searches for a help topic.

lookfor Searches help entries for a keyword.
quit Stops MATLAB.

who Lists current variables.

whos Lists current variables (long display).

Commands for Working with the System

MATLAB provides various useful commands for working with the system, like saving the current
work in the workspace as a file and loading the file later.

It also provides various commands for other system-related activities like, displaying date, listing
files in the directory, displaying current directory, etc.

The following table displays some commonly used system-related commands —

Command Purpose

cd Changes current directory.

date Displays current date.

delete Deletes a file.

diary Switches on/off diary file recording.
dir Lists all files in current directory.

load Loads workspace variables from a file.
path Displays search path.

pwd Displays current directory.

save Saves workspace variables in a file.

type Displays contents of a file.
what Lists all MATLAB files in the current directory.
wklread Reads .wkl spreadsheet file.

Input and Output Commands

MATLAB provides the following input and output related commands —

Command Purpose

disp Displays contents of an array or string.
fscanf Read formatted data from a file.

format Controls screen-display format.

fprintf Performs formatted writes to screen or file.
input Displays prompts and waits for input.

; Suppresses screen printing.

The fscanf and fprintf commands behave like C scanf and printf functions. They support the
following format codes —

Format Code Purpose

%s Format as a string.

%d Format as an integer.

%f Format as a floating point value.

%e Format as a floating point value in scientific notation.
%9 Formatin the most compact form: %f or %e.

\n Insert a new line in the output string.

\t Insert a tab in the output string.

The format function has the following forms used for numeric display —

Format Function Display up to

format short Four decimal digits (default).
formatlong 16 decimal digits.

format short e Five digits plus exponent.
formatlong e 16 digits plus exponents.
format bank Two decimal digits.

format + Positive, negative, or zero.

format rat Rational approximation.
format compact Suppresses some line feeds.

format loose Resets to less compact display mode.

Vector, Matrix and Array Commands

The following table shows various commands used for working with arrays, matrices and vectors —

Command Purpose

cat Concatenates arrays.

find Finds indices of nonzero elements.
length Computes number of elements.
linspace Creates regularly spaced vector.
logspace Creates logarithmically spaced vector.
max Returns largest element.

min Returns smallest element.

prod Product of each column.

reshape Changes size.

size Computes array size.

sort Sorts each column.

sum Sums each column.

eye Creates an identity matrix.

ones Creates an array of ones.

zeros Creates an array of zeros.

Cross Computes matrix cross products.

dot Computes matrix dot products.

det Computes determinant of an array.
inv Computes inverse of a matrix.

pinv Computes pseudoinverse of a matrix.
rank Computes rank of a matrix.

rref Computes reduced row echelon form.
cell Creates cell array.

celldisp Displays cell array.

cellplot Displays graphical representation of cell array.
num2cell Converts numeric array to cell array.

deal Matches input and output lists.

iscell Identifies cell array.

Plotting Commands

MATLAB provides numerous commands for plotting graphs. The following table shows some of the
commonly used commands for plotting —

Command Purpose

axis Sets axis limits.

fplot Intelligent plotting of functions.

grid Displays gridlines.

plot Generates xy plot.

print Prints plot or saves plot to a file.

title Puts text at top of plot.

xlabel Adds text label to x-axis.

ylabel Adds text label to y-axis.

axes Creates axes objects.

close Closes the current plot.

close all Closes all plots.

figure Opens a new figure window.

gtext Enables label placement by mouse.

hold Freezes current plot.

legend Legend placement by mouse.

refresh Redraws current figure window.

set Specifies properties of objects such as axes.
subplot Creates plots in subwindows.

text Places string in figure.

bar Creates bar chart.

loglog Creates log-log plot.

polar Creates polar plot.

semilogx Creates semilog plot. (logarithmic abscissa).
semilogy Creates semilog plot. (logarithmic ordinate).
stairs Creates stairs plot.

stem Creates stem plot.

MATLAB - M-FILES

So far, we have used MATLAB environment as a calculator. However, MATLAB is also a powerful

programming language, as well as an interactive computational environment.

In previous chapters, you have learned how to enter commands from the MATLAB command
prompt. MATLAB also allows you to write series of commands into a file and execute the file as
complete unit, like writing a function and calling it.

The M Files

MATLAB allows writing two kinds of program files —
e Scripts — script files are program files with .m extension. In these files, you write series of
commands, which you want to execute together. Scripts do not accept inputs and do not
return any outputs. They operate on data in the workspace.

¢ Functions — functions files are also program files with .m extension. Functions can accept
inputs and return outputs. Internal variables are local to the function.

You can use the MATLAB editor or any other text editor to create your .mfiles. In this section, we
will discuss the script files. A script file contains multiple sequential lines of MATLAB commands
and function calls. You can run a script by typing its name at the command line.

Creating and Running Script File
To create scripts files, you need to use a text editor. You can open the MATLAB editor in two ways:

e Using the command prompt
e Using the IDE

If you are using the command prompt, type edit in the command prompt. This will open the editor.
You can directly type edit and then the filename (with .m extension)

edit
or
edit <filename>

The above command will create the file in default MATLAB directory. If you want to store all
program files in a specific folder, then you will have to provide the entire path.

Let us create a folder named progs. Type the following commands at the command prompt (>>):

mkdir progs % create directory progs under default directory
chdir progs % changing the current directory to progs
edit progl.m % creating an m file named progl.m

If you are creating the file for first time, MATLAB prompts you to confirm it. Click Yes.

EDITOR PUBLISH VIEW
Th g [@mre et B AR ;
(1Z| Compare ~ Comment %6 ‘& 5d A GoTo =
New Open Save L= _‘_E_ e EF‘H Bres
- - » =i Print - Indent |;=__| o B \{ Find ~
FLE EDIT NAVIGATE BREA

progl.m

i

Alternatively, if you are using the IDE, choose NEW -> Script. This also opens the editor and
creates a file named Untitled. You can name and save the file after typing the code.

Type the following code in the editor —

NoOfStudents = 6000;

TeachingStaff = 150;

NonTeachingStaff = 20;

Total = NoOfStudents + TeachingStaff ...
+ NonTeachingStaff;

disp(Total);

After creating and saving the file, you can run it in two ways —

¢ Clicking the Run button on the editor window or

e Just typing the filename (without extension) in the command prompt: >> progl

The command window prompt displays the result —

6170

Example

Create a script file, and type the following code —

* + +
(e

n T
1
\l

in(b)

D0 Q0O D
T T T
o U1l 0O Ul
< g
o

L)

o

o

N

When the above code is compiled and executed, it produces the following result —

c = 12

d = 67120/5303
e = 23099/365
f = 29/9104528

MATLAB - DATA TYPES

MATLAB does not require any type declaration or dimension statements. Whenever MATLAB
encounters a new variable name, it creates the variable and allocates appropriate memory space.

If the variable already exists, then MATLAB replaces the original content with new content and
allocates new storage space, where necessary.

For example,

Total = 42

The above statement creates a 1-by-1 matrix named 'Total' and stores the value 42 in it.

Data Types Available in MATLAB

MATLAB provides 15 fundamental data types. Every data type stores data that is in the form of a
matrix or array. The size of this matrix or array is a minimum of 0-by-0 and this can grow up to a
matrix or array of any size.

The following table shows the most commonly used data types in MATLAB —

Data Type Description

int8 8-bit signed integer

uint8 8-bit unsigned integer
intl6 16-bit sighed integer
uintle 16-bit unsigned integer
int32 32-bit signed integer
uint32 32-bit unsigned integer
int64 64-bit signed integer
uint64 64-bit unsigned integer
single single precision numerical data
double double precision numerical data
logical logical values of 1 or O, represent true and false respectively
char character data (strings are stored as vector of characters)
cell array array of indexed cells, each capable of storing an array of a different
dimension and data type
structure C-like structures, each structure having named fields capable of storing
an array of a different dimension and data type
function handle pointer to a function
user classes objects constructed from a user-defined class
java classes objects constructed from a Java class
Example

Create a script file with the following code —

uint32(789.50)
5678.92347
= int32(rn)

>
I

When the above code is compiled and executed, it produces the following result —

str = Hello World!

n = 2345

d = 2345
un = 790

rn = 5678.9
c = 5679

Data Type Conversion

MATLAB provides various functions for converting, a value from one data type to another. The
following table shows the data type conversion functions —

Function Purpose

char Convert to character array (string)

int2str
mat2str
num2str
str2double

str2num

native2unicode

unicode2native

base2dec
bin2dec
dec2base
dec2bin
dec2hex
hex2dec
hex2num
numz2hex
cell2mat
cell2struct
cellstr
mat2cell
num2cell

struct2cell

Convert integer data to string

Convert matrix to string

Convert number to string

Convert string to double-precision value

Convert string to number

Convert numeric bytes to Unicode characters

Convert Unicode characters to numeric bytes

Convert base N number string to decimal number

Convert binary number string to decimal number

Convert decimal to base N number in string

Convert decimal to binary number in string

Convert decimal to hexadecimal number in string

Convert hexadecimal number string to decimal number
Convert hexadecimal number string to double-precision number
Convert singles and doubles to IEEE hexadecimal strings
Convert cell array to numeric array

Convert cell array to structure array

Create cell array of strings from character array

Convert array to cell array with potentially different sized cells
Convert array to cell array with consistently sized cells

Convert structure to cell array

Determination of Data Types

MATLAB provides various functions for identifying data type of a variable.

Following table provides the functions for determining the data type of a variable —

Function
is

isa

iscell
iscellstr
ischar
isfield
isfloat

ishghandle

Purpose

Detect state

Determine if input is object of specified class
Determine whether input is cell array
Determine whether inputis cell array of strings
Determine whether item is character array
Determine whether input is structure array field
Determine if input is floating-point array

True for Handle Graphics object handles

isinteger
isjava
islogical
isnumeric
isobject
isreal
isscalar
isstr
isstruct
isvector

class

validateattributes

whos

Example

Determine if inputis integer array
Determine if input is Java object
Determine if inputis logical array
Determine if inputis numeric array
Determine if input is MATLAB object
Check if inputis real array

Determine whether inputis scalar
Determine whether inputis character array
Determine whether input is structure array
Determine whether input is vector
Determine class of object

Check validity of array

List variables in workspace, with sizes and types

Create a script file with the following code —

X =3
isinteger(x)
isfloat(x)
isvector(x)
isscalar (x)
isnumeric(x)

X = 23.54
isinteger(x)
isfloat(x)
isvector(x)
isscalar (x)
isnumeric(x)

x = [1 2 3]
isinteger(x)
isfloat(x)

isvector(x)
isscalar (x)

X = 'Hello'
isinteger(x)
isfloat(x)
isvector(x)
isscalar (x)
isnumeric(x)

When you run the file, it produces the following result —

w

X =
ans
ans
ans
ans
ans
X

TRRTRR TR
RPRrRrRPO

1177/50

~

ans
ans
ans
ans
ans

TRRTRR TR
RPRrRrRPO

ans
ans
ans
ans

ans
ans
ans
ans
ans

x
1
o5
OOI—\CDO&OHHO
[
o

MATLAB - OPERATORS

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. MATLAB is designed to operate primarily on whole matrices and arrays. Therefore,
operators in MATLAB work both on scalar and non-scalar data. MATLAB allows the following types
of elementary operations —

e Arithmetic Operators

Relational Operators

Logical Operators

Bitwise Operations

Set Operations
Arithmetic Operators
MATLAB allows two different types of arithmetic operations —

e Matrix arithmetic operations

e Array arithmetic operations

Matrix arithmetic operations are same as defined in linear algebra. Array operations are executed
element by element, both on one-dimensional and multidimensional array.

The matrix operators and array operators are differentiated by the period (.) symbol. However, as
the addition and subtraction operation is same for matrices and arrays, the operator is same for
both cases. The following table gives brief description of the operators —

Show Examples

Operator Description

+ Addition or unary plus. A+B adds the values stored in variables A and B. Aand B
must have the same size, unless one is a scalar. A scalar can be added to a
matrix of any size.

- Subtraction or unary minus. A-B subtracts the value of B from A. A and B must
have the same size, unless one is a scalar. A scalar can be subtracted from a
matrix of any size.

Matrix multiplication. C = A*B is the linear algebraic product of the matrices A
and B. More precisely,

/matlab/matlab_arithmetic_operators.htm

n
Cli, j) =Y Ali,k)Bik,)
k=1

For non-scalar A and B, the number of columns of A must be equal to the number
of rows of B. A scalar can multiply a matrix of any size.

R Array multiplication. A*B is the element-by-element product of the arrays A and
B. A and B must have the same size, unless one of them is a scalar.

/ Slash or matrix right division. B/A is roughly the same as B*inv(A). More precisely,
B/A = (A"\B')".

J Array right division. A./B is the matrix with elements A(i,j)/B(i,j). A and B must

have the same size, unless one of them is a scalar.

\ Backslash or matrix left division. If A is a square matrix, A\B is roughly the same
as inv(A)*B, exceptitis computed in a different way. If A is an n-by-n matrix and B
is a column vector with n components, or a matrix with several such columns,
then X = A\B is the solution to the equation AX = B. A warning message is
displayed if A is badly scaled or nearly singular.

A Array left division. A.\\B is the matrix with elements B(i,j)/A(i,j). A and B must have
the same size, unless one of them is a scalar.

~ Matrix power. X~ p is X to the power p, if p is a scalar. If p is an integer, the power
is computed by repeated squaring. If the integer is negative, X is inverted first.
For other values of p, the calculation involves eigenvalues and eigenvectors, such
thatif [V,D] = eig(X), then X~p = V*D."p/V.

e Array power. A.” B is the matrix with elements A(i,j) to the B(i,j) power. A and B
must have the same size, unless one of them is a scalar.

' Matrix transpose. A' is the linear algebraic transpose of A. For complex matrices,
this is the complex conjugate transpose.

. Array transpose. A.' is the array transpose of A. For complex matrices, this does
not involve conjugation.

Relational Operators

Relational operators can also work on both scalar and non-scalar data. Relational operators for
arrays perform element-by-element comparisons between two arrays and return a logical array of
the same size, with elements set to logical 1 (true) where the relation is true and elements set to
logical O (false) where itis not.

The following table shows the relational operators available in MATLAB:

Show Examples

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
== Equal to

~= Not equal to

/matlab/matlab_relational_operators.htm

Logical Operators

MATLAB offers two types of logical operators and functions:
e Element-wise — These operators operate on corresponding elements of logical arrays.
e Short-circuit — These operators operate on scalar and, logical expressions.

Element-wise logical operators operate element-by-element on logical arrays. The symbols &, |,
and ~ are the logical array operators AND, OR, and NOT.

Short-circuit logical operators allow short-circuiting on logical operations. The symbols && and ||
are the logical short-circuit operators AND and OR.

Show Examples

Bitwise Operations

,and ™ are

Bitwise operators work on bits and perform bit-by-bit operation. The truth tables for &,
as follows —

p q P&q pla p~q
0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Assume if A = 60; and B = 13; Now in binary format they will be as follows:
A =00111100

B = 00001101

A&B = 0000 1100

A|B = 00111101

A”B = 0011 0001

~A =1100 0011

MATLAB provides various functions for bit-wise operations like 'bitwise and’, 'bitwise or' and
'‘bitwise not' operations, shift operation, etc.

The following table shows the commonly used bitwise operations:

Show Examples

Function Purpose

bitand(a, b) Bit-wise AND of integersa and b

bitcmp(a) Bit-wise complement of a

bitget(a,pos) Get bit at specified position pos, in the integer array a

bitor(a, b) Bit-wise OR of integersa and b

/matlab/matlab_logical_operators.htm
/matlab/matlab_bitwise_operators.htm

bitset(a, pos)
bitshift(a, k)

bitxor(a, b)

swapbytes

Set Operations

Set bit at specific location pos of a

Returns a shifted to the left by k bits, equivalent to multiplying by 2k,
Negative values of k correspond to shifting bits right or dividing by 2Kl
and rounding to the nearest integer towards negative infinite. Any
overflow bits are truncated.

Bit-wise XOR of integersa and b

Swap byte ordering

MATLAB provides various functions for set operations, like union, intersection and testing for set

membership, etc.

The following table shows some commonly used set operations —

Show Examples

Function

intersect(A,B)

intersect(A,B,'rows')

ismember(A,B)

ismember(A,B,'rows')

issorted(A)

issorted(A, 'rows')

setdiff(A,B)

setdiff(A,B,'rows')

setxor
union

unique

Description

Set intersection of two arrays; returns the values common to both A
and B. The values returned are in sorted order.

Treats each row of A and each row of B as single entities and returns
the rows common to both A and B. The rows of the returned matrix are
in sorted order.

Returns an array the same size as A, containing 1 (true) where the
elements of A are found in B. Elsewhere, it returns 0 (false).

Treats each row of A and each row of B as single entities and returns a
vector containing 1 (true) where the rows of matrix A are also rows of B.
Elsewhere, it returns 0 (false).

Returns logical 1 (true) if the elements of A are in sorted order and
logical O (false) otherwise. Input A can be a vector or an N-by-1 or 1-by-
N cell array of strings. A is considered to be sorted if A and the
output of sort(A) are equal.

Returns logical 1 (true) if the rows of two-dimensional matrix A isin
sorted order, and logical O (false) otherwise. Matrix A is considered
to be sorted if A and the output of sortrows(A) are equal.

Sets difference of two arrays; returns the values in A that are notin B.
The values in the returned array are in sorted order.

Treats each row of A and each row of B as single entities and returns
the rows from A that are notin B. The rows of the returned matrix are in
sorted order.

The 'rows' option does not support cell arrays.

Sets exclusive OR of two arrays
Sets union of two arrays

Unique valuesin array

/matlab/matlab_set_operators.htm

MATLAB - DECISION MAKING

Decision making structures require that the programmer should specify one or more conditions to
be evaluated or tested by the program, along with a statement or statements to be executed if the
condition is determined to be true, and optionally, other statements to be executed if the condition
is determined to be false.

Following is the general form of a typical decision making structure found in most of the
programming languages —

If condition If condition
is true is false

conditional |

code

MATLAB provides following types of decision making statements. Click the following links to check
their detail —

Statement Description

_ An if ... end statement consists of a boolean expression
if ... end statement followed by one or more statements.

An if statement can be followed by an optional else

if...else...end statement statement, which executes when the boolean expression is
false.
_ _ An if statement can be followed by one (or more) optional
If... elseif...elseif...else...end elseif... and an else statement, which is very useful to test
statements various conditions.

You can use one if or elseif statement inside another if or
nested if statements elseif statement(s).

. A switch statement allows a variable to be tested for equality
switch statement against a list of values.

You can use one switch statement inside another switch
nested switch statements statement(s).

MATLAB - LOOP TYPES

/matlab/if_end_statement_matlab.htm
/matlab/if_else_statement_matlab.htm
/matlab/if_elseif_else_statement.htm
/matlab/nested_if_statements_matlab.htm
/matlab/switch_statement_matlab.htm
/matlab/nested_switch_statements_matlab.htm

There may be a situation when you need to execute a block of code several number of times. In
general, statements are executed sequentially. The first statement in a function is executed first,
followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and
following is the general form of a loop statement in most of the programming languages —

Conditional Code

If condition
is true

If condition
is false

MATLAB provides following types of loops to handle looping requirements. Click the following links
to check their detail —

Loop Type Description
_ Repeats a statement or group of statements while a given
while loop condition is true. It tests the condition before executing the loop
body.

Executes a sequence of statements multiple times and
for loop abbreviates the code that manages the loop variable.

You can use one or more loops inside any another loop.
nested loops

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a
scope, all automatic objects that were created in that scope are destroyed.

MATLAB supports the following control statements. Click the following links to check their detail.

Control Statement Description

Terminates the loop statement and transfers execution to the
break statement statement immediately following the loop.

/matlab/matlab_while_loop.htm
/matlab/matlab_for_loop.htm
/matlab/matlab_nested_loops.htm
/matlab/matlab_break_statement.htm

_ Causes the loop to skip the remainder of its body and immediately
continue statement retest its condition prior to reiterating.

MATLAB - VECTORS

A vector is a one-dimensional array of numbers. MATLAB allows creating two types of vectors —

e Row vectors

e Column vectors
Row Vectors

Row vectors are created by enclosing the set of elements in square brackets, using space or
comma to delimit the elements.

r=1[7809 10 11]

MATLAB will execute the above statement and return the following result —

7 8 9 10 11

Column Vectors

Column vectors are created by enclosing the set of elements in square brackets, using semicolon
to delimit the elements.

c =1[7; 8; 9; 10; 11]

MATLAB will execute the above statement and return the following result —

[N
R o® oo~

Referencing the Elements of a Vector

You can reference one or more of the elements of a vector in several ways. The ith component of
a vector v is referred as v(i). For example —

v =1[1; 2, 3; 4; 5; 6]; % creating a column vector of 6 elements
v(3)

MATLAB will execute the above statement and return the following result —
ans = 3

When you reference a vector with a colon, such as v(:), all the components of the vector are listed.

v = [1; 2; 3; 4; 5; 6]; % creating a column vector of 6 elements

/matlab/matlab_continue_statement.htm

V()
MATLAB will execute the above statement and return the following result —

ans =

DU, WNRE

MATLAB allows you to select a range of elements from a vector.

For example, let us create a row vector rv of 9 elements, then we will reference the elements 3 to
7 by writing rv(3:7) and create a new vector named sub_rv.

rv=[1234567809];
sub_rv = rv(3:7)

MATLAB will execute the above statement and return the following result —

sub_rv =

3 4 5 6 7

Vector Operations
In this section, let us discuss the following vector operations —

e Addition and Subtraction of Vectors

e Scalar Multiplication of Vectors

e Transpose of a Vector

e Appending Vectors

e Magnitude of a Vector

e Vector Dot Product

e Vectors with Uniformly Spaced Elements

MATLAB - MATRIX

A matrix is a two-dimensional array of numbers.

In MATLAB, you create a matrix by entering elements in each row as comma or space delimited
numbers and using semicolons to mark the end of each row.

For example, let us create a 4-by-5 matrixa —

a=[12345;,23456;34567; 456 7 8]

MATLAB will execute the above statement and return the following result —

a =

A wWN PR
o Ul W
~N o 0o b
oo~ O O

g~ wN

/matlab/matlab_vector_add_subtract.htm
/matlab/matlab_vector_scalar_multiplication.htm
/matlab/matlab_vector_transpose.htm
/matlab/matlab_vector_appending.htm
/matlab/matlab_vector_magnitude.htm
/matlab/matlab_vector_dot_product.htm
/matlab/matlab_vector_uniformly_spaced.htm

Referencing the Elements of a Matrix

To reference an elementin the mt" row and nth column, of a matrix mx, we write —

mx(m, n);

For example, to refer to the elementin the 2"d row and 5th column, of the matrix a, as created in
the last section, we type —

a=-[12345;,23456;34567; 456 7 8];
a(2,5)

MATLAB will execute the above statement and return the following result —

ans = 6

To reference all the elements in the mth column we type A(:,m).
Let us create a column vector v, from the elements of the 4th row of the matrix a:

123465, 23456; 34567; 4567 8];

a=|
v = a(:,4)

MATLAB will execute the above statement and return the following result —

VvV =

~No oA

You can also select the elements in the mth through nth columns, for this we write —
a(:,m:n)
Let us create a smaller matrix taking the elements from the second and third columns —

a=[12345;23456; 34567, 4567 8],
a(:, 2:3)

MATLAB will execute the above statement and return the following result —

ans =

abh wN
o T~ W

In the same way, you can create a sub-matrix taking a sub-part of a matrix.

a=-[12345;,23456;34567; 456 7 8];
a(:, 2:3)

MATLAB will execute the above statement and return the following result —

ans =

aa b wN
(o] & RN}

In the same way, you can create a sub-matrix taking a sub-part of a matrix.

For example, let us create a sub-matrix sa taking the inner subpart of a:

3 4 5
4 5 6

To do this, write —

5 23 456; 345617; 4567 8];

Deleting a Row or a Column in a Matrix

You can delete an entire row or column of a matrix by assigning an empty set of square braces []
to that row or column. Basically, [] denotes an empty array.

For example, let us delete the fourth row of a —

a=[12345;23456;34567; 4567 8];
a(4,) =11

MATLAB will execute the above statement and return the following result —

a =
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7

Next, let us delete the fifth column of a —

a=[123465;23456;34567; 4567 8];
a(: , 5)=[1]

MATLAB will execute the above statement and return the following result —

a =
1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7
Example

In this example, let us create a 3-by-3 matrix m, then we will copy the second and third rows of this
matrix twice to create a 4-by-3 matrix.

Create a script file with the following code —

a=[123;456; 78 9];
new_mat = a([2,3,2,3],:)

When you run the file, it displays the following result —

new_mat =
4 5 6

7 8 9
4 5 6
7 8 9

Matrix Operations
In this section, let us discuss the following basic and commonly used matrix operations —

e Addition and Subtraction of Matrices

e Division of Matrices

e Scalar Operations of Matrices

e Transpose of a Matrix

e Concatenating Matrices

e Matrix Multiplication

e Determinant of a Matrix

e Inverse of a Matrix

MATLAB - ARRAYS

All variables of all data types in MATLAB are multidimensional arrays. A vector is a one-
dimensional array and a matrix is a two-dimensional array.

We have already discussed vectors and matrices. In this chapter, we will discuss multidimensional
arrays. However, before that, let us discuss some special types of arrays.

Special Arrays in MATLAB

In this section, we will discuss some functions that create some special arrays. For all these
functions, a single argument creates a square array, double arguments create rectangular array.

The zeros() function creates an array of all zeros —

For example —

zeros(5)

MATLAB will execute the above statement and return the following result —

ans =

[oNoNoNoNO]
[oNoNoNoNO]
[oNoNoNoNO]
[oNoNoNoNO]
[oNoNoNoNO]

The ones() function creates an array of all ones —

For example —

ones(4, 3)
MATLAB will execute the above statement and return the following result —

ans =
1 1 1
1 1 1

/matlab/matlab_matrix_add_subtract.htm
/matlab/matlab_matrix_division.htm
/matlab/matlab_matrix_scalar_operation.htm
/matlab/matlab_matrix_transpose.htm
/matlab/matlab_matrix_concatenation.htm
/matlab/matlab_matrix_multiplication.htm
/matlab/matlab_matrix_determinant.htm
/matlab/matlab_matrix_inverse.htm

The eye() function creates an identity matrix.

For example —

eye(4)
MATLAB will execute the above statement and return the following result —

ans =

[oNoNoN -3
[cNoN N}
ol S NoNo)
Sl oNoNo)

The rand() function creates an array of uniformly distributed random numbers on (0,1) —

For example —

rand(3, 5)

MATLAB will execute the above statement and return the following result —

ans =
0.8147 0.9134 0.2785 0.9649 0.9572
0.9058 0.6324 0.5469 0.1576 0.4854
0.1270 0.0975 0.9575 0.9706 0.8003

A Magic Square

A magic square is a square that produces the same sum, when its elements are added row-wise,
column-wise or diagonally.

The magic() function creates a magic square array. It takes a singular argument that gives the
size of the square. The argument must be a scalar greater than or equal to 3.

magic(4)

MATLAB will execute the above statement and return the following result —

ans =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Multidimensional Arrays

An array having more than two dimensions is called a multidimensional array in MATLAB.
Multidimensional arrays in MATLAB are an extension of the normal two-dimensional matrix.

Generally to generate a multidimensional array, we first create a two-dimensional array and
extend it.

For example, let's create a two-dimensional array a.

a=1[795;619; 43 2]

MATLAB will execute the above statement and return the following result —

a =
7 9 5
6 1 9
4 3 2

The array a is a 3-by-3 array; we can add a third dimension to a, by providing the values like —

a(:, :, 2)=[123; 456; 7 8 9]

MATLAB will execute the above statement and return the following result —

a(:,:,1) =
7 9 5
6 1 9
4 3 2
a(:,:,2) =
1 2 3
4 5 6
7 8 9

We can also create multidimensional arrays using the ones(), zeros() or the rand() functions.

For example,

b = rand(4, 3, 2)

MATLAB will execute the above statement and return the following result —

b(:,:,1) =
0.0344 0.7952 0.6463
0.4387 0.1869 0.7094
0.3816 0.4898 0.7547
0.7655 0.4456 0.2760
b(:,:,2) =
0.6797 0.4984 0.2238
0.6551 0.9597 0.7513
0.1626 0.3404 0.2551
0.1190 0.5853 0.5060

We can also use the cat() function to build multidimensional arrays. It concatenates a list of arrays
along a specified dimension —

Syntax for the cat() function is —
B = cat(dim, A1, A2...)
Where,
e Bisthe new array created

e Al ,A2, ... are the arrays to be concatenated

e dim is the dimension along which to concatenate the arrays
Example

Create a script file and type the following code into it —

O T o
In o

When you run the file, it displays —

c(:,:,1) =

9 8 7

6 5 4

3 2 1
c(:,:,2) =

1 2 3

4 5 6

7 8 9
c(:,:,3) =

2 3 1

4 7 8

3 9 0

Array Functions

MATLAB provides the following functions to sort, rotate, permute, reshape, or shift array contents.

Function Purpose

length Length of vector or largest array dimension
ndims Number of array dimensions

numel Number of array elements

size Array dimensions

iscolumn Determines whether input is column vector
isempty Determines whether array is empty
ismatrix Determines whether input is matrix

isrow Determines whether input is row vector
isscalar Determines whether input is scalar
isvector Determines whether input is vector

blkdiag Constructs block diagonal matrix from input arguments
circshift Shifts array circularly

ctranspose Complex conjugate transpose

diag Diagonal matrices and diagonals of matrix
flipdim Flips array along specified dimension

fliplr Flips matrix from left to right

flipud Flips matrix up to down

ipermute Inverses permute dimensions of N-D array
permute Rearranges dimensions of N-D array
repmat Replicates and tile array

reshape Reshapes array

roto0 Rotates matrix 90 degrees

shiftdim Shifts dimensions
issorted Determines whether set elements are in sorted order
sort Sorts array elements in ascending or descending order
sortrows Sorts rows in ascending order
squeeze Removes singleton dimensions
transpose Transpose
vectorize Vectorizes expression
Examples

The following examples illustrate some of the functions mentioned above.
Length, Dimension and Number of elements:

Create a script file and type the following code into it —

x = [7.1, 3.4, 7.2, 28/4, 3.6, 17, 9.4, 8.9];
length(x) % length of x vector

y = rand(3, 4, 5, 2);

ndims(y) % no of dimensions in array y

s = ['zara', 'Nuha', 'Shamim', 'Riz', 'Shadab'];
numel(s) % no of elements in s

When you run the file, it displays the following result —

ans = 8
ans = 4
ans = 23

Circular Shifting of the Array Elements —

Create a script file and type the following code into it —

a=[123; 456; 7 8 9] % the original array a
b = circshift(a, 1) % circular shift first dimension values down by 1.
c = circshift(a, [1 -1]) % circular shift first dimension values % down by 1

% and second dimension values to the left % by 1.

When you run the file, it displays the following result —

a =
1 2 3
4 5 6
7 8 9
b =
7 8 9
1 2 3
4 5 6
c =
8 9 7
2 3 1
5 6 4

Sorting Arrays

Create a script file and type the following code into it —

v = [23 45 12 9 5 0 19 17] % horizontal vector

sort(v) % sorting v
m=1[264;539; 20 1] % two dimensional array
sort(m, 1) % sorting m along the row
sort(m, 2) % sorting m along the column

When you run the file, it displays the following result —

vV =

23 45 12 9 5 0] 19 17
ans =

(0] 5 9 12 17 19 23 45
m =

2 6 4

5 3 9

2 0] 1
ans =

2 0] 1

2 3 4

5 6 9
ans =

2 4 6

3 5 9

0 1 2
Cell Array

Cell arrays are arrays of indexed cells where each cell can store an array of a different dimensions
and data types.

The cell function is used for creating a cell array. Syntax for the cell function is —

C = cell(dim)

C = cell(dim1, ..., dimN)
D = cell(obj)

Where,

e Cisthe cell array;
e dim is a scalar integer or vector of integers that specifies the dimensions of cell array C;
e diml, ..., dimN are scalar integers that specify the dimensions of C;
e 0bj is One of the following:
o Java array or object

o .NET array of type System.String or System.Object

Example
Create a script file and type the following code into it —

Cc
Cc

cell(2, 5);
{'Red', 'Blue', 'Green', 'Yellow', 'White'; 1 2 3 4 5}

When you run the file, it displays the following result —

C
{
[1,1] = Red

[2,1]

[1,2] = Blue
[2,2] = 2
[1,3] = Green
[2,3] = 3
[1,4] = Yellow
[2,4] = 4
[1,5] = White
[2,5] = 5

}

Accessing Data in Cell Arrays
There are two ways to refer to the elements of a cell array —

¢ Enclosing the indices in first bracket (), to refer to sets of cells

e Enclosing the indices in braces {}, to refer to the data within individual cells
When you enclose the indices in first bracket, it refers to the set of cells.
Cell array indices in smooth parentheses refer to sets of cells.

For example:

ed', 'Blue', 'Green', 'Yellow',6 'White'; 1 2 3 4 5};

c = {'R
c(1:2,1:2)

MATLAB will execute the above statement and return the following result —

ans =

{
[1,1] = Red
[2,1] = 1
[1,2] = Blue
[2,2] = 2

}

You can also access the contents of cells by indexing with curly braces.

For example —

c = {'Red', 'Blue', 'Green', 'Yellow', 'White'; 1 2 3 4 5};
c{1, 2:4}

MATLAB will execute the above statement and return the following result —

ans = Blue
ans = Green
ans = Yellow

MATLAB - COLON NOTATION

The colon(:) is one of the most useful operator in MATLAB. It is used to create vectors, subscript
arrays, and specify for iterations.

If you want to create a row vector, containing integers from 1 to 10, you write —

1:10
MATLAB executes the statement and returns a row vector containing the integers from 1 to 10 —

ans =

1 2 3 4 5 6 7 8 9 10

If you want to specify an increment value other than one, for example —

100)F =55 S0
MATLAB executes the statement and returns the following result —

ans =
100 95 90 85 80 75 70 65 60 55 50

Let us take another example —

0:pi/8:pi
MATLAB executes the statement and returns the following result —

ans =
Columns 1 through 7
0 0.3927 0.7854 1.1781 1.5708 1.9635 2.3562
Columns 8 through 9
2.7489 3.1416

You can use the colon operator to create a vector of indices to select rows, columns or elements of
arrays.

The following table describes its use for this purpose (let us have a matrix A) —

Format Purpose

A(:,j) is the jth column of A.

A(i,:) is the ith row of A.

A(:,:) is the equivalent two-dimensional array. For matrices this is the same as A.
A(j:k) is A(j), A(j+1),...,Ak).

A(:,j:k) is A(:j), ACGj+1),...,A(: k).

A(:):,k) is the kth page of three-dimensional array A.

A(i,j,k,:) is a vector in four-dimensional array A. The vector includes A(i,j,k,1), A(i,j,k,2),

Ali,j,k,3), and so on.
A(:) is all the elements of A, regarded as a single column. On the left side of an

assignment statement, A(:) fills A, preserving its shape from before. In this case,
the right side must contain the same number of elements as A.

Example

Create a script file and type the following code in it —
A=1[1234;4567; 789 10]
A(:,2) % second column of A

A(:,2:3) % second and third column of A
A(2:3,2:3) % second and third rows and second and third columns

When you run the file, it displays the following result —

A =

1 2 3 4
4 5 6 7
7 8 9 10
ans =
2
5
8
ans =
2 3
5 6
8 9
ans =
5 6
8 9

MATLAB - NUMBERS

MATLAB supports various numeric classes that include signed and unsigned integers and single-
precision and double-precision floating-point numbers. By default, MATLAB stores all numeric
values as double-precision floating point numbers.

You can choose to store any number or array of numbers as integers or as single-precision
numbers.

All numeric types support basic array operations and mathematical operations.
Conversion to Various Numeric Data Types

MATLAB provides the following functions to convert to various numeric data types —

Function Purpose

double Converts to double precision number
single Converts to single precision number
int8 Converts to 8-bit signed integer
intl6 Converts to 16-bit signed integer
int32 Converts to 32-bit signed integer
int64 Converts to 64-bit signed integer
uint8 Converts to 8-bit unsigned integer
uintle Converts to 16-bit unsigned integer
uint32 Converts to 32-bit unsigned integer
uinte4 Converts to 64-bit unsigned integer
Example

Create a script file and type the following code —

single([5.32 3.47 6.28]) .*
double([5.32 3.47 6.28]) .*
int8([5.32 3.47 6.28]) .* 7
int16([5.32 3.47 6.28]) .* 7.5
int32([5.32 3.47 6.28]) .* 7.5
int64([5.32 3.47 6.28]) .* 7.5

7o
7o
o

X X X X X X
I mn

When you run the file, it shows the following result —

X =
39.900 26.025 47.100
X =
39.900 26.025 47.100
X =
38 23 45
X =
38 23 45
X =
38 23 45
X =
38 23 45
Example

Let us extend the previous example a little more. Create a script file and type the following code —

X
X
X

int32([5.32 3.47 6.28]) .* 7.5
int64([5.32 3.47 6.28]) .* 7.5
num2cell(x)

When you run the file, it shows the following result —

X =
38 23 45
X =
38 23 45
X =
{
[1,1] = 38
[1,2] = 23
[1,3] = 45
}

Smallest and Largest Integers

The functions intmax() and intmin() return the maximum and minimum values that can be
represented with all types of integer numbers.

Both the functions take the integer data type as the argument, for example, intmax(int8) or

intmin(int64) and return the maximum and minimum values that you can represent with the
integer data type.

Example

The following example illustrates how to obtain the smallest and largest values of integers. Create
a script file and write the following code in it —

% displaying the smallest and largest signed integer data
str = 'The range for int8 is:\n\t%d to %d ';

sprintf(str, intmin('int8'), intmax('int8'))

str = 'The range for intl16 is:\n\t%d to %d ';

sprintf(str, intmin('intl6'), intmax('intl6'))

str = 'The range for int32 is:\n\t%d to %d ';

sprintf(str, intmin('int32'), intmax('int32'))

str = 'The range for int64 is:\n\t%d to %d ';

sprintf(str, intmin('int64'), intmax('int64'))

% displaying the smallest and largest unsigned integer data
str = 'The range for uint8 is:\n\t%d to %d ';

sprintf(str, intmin('uint8'), intmax('uint8'))

str = 'The range for uintl6 is:\n\t%d to %d ';

sprintf(str, intmin('uintl16'), intmax('uintl6'))

str = 'The range for uint32 is:\n\t%d to %d ';

sprintf(str, intmin('uint32'), intmax('uint32'))

str = 'The range for uint64 is:\n\t%d to %d ';

sprintf(str, intmin('uint64'), intmax('uinté4'))

When you run the file, it shows the following result —

ans = The range for int8 is:
-128 to 127

ans = The range for intl6 is:
-32768 to 32767

ans = The range for int32 is:
-2147483648 to 2147483647

ans = The range for int64 is:
0 to O

ans = The range for uint8 is:
0 to 255

ans = The range for uintl6 is:
0 to 65535

ans = The range for uint32 is:
0 to -1

ans = The range for uint64 is:
O to 18446744073709551616

Smallest and Largest Floating Point Numbers

The functions realmax() and realmin() return the maximum and minimum values that can be
represented with floating point numbers.

Both the functions when called with the argument 'single’, return the maximum and minimum
values that you can represent with the single-precision data type and when called with the
argument '‘double’, return the maximum and minimum values that you can represent with the
double-precision data type.

Example

The following example illustrates how to obtain the smallest and largest floating point numbers.
Create a script file and write the following code in it —

% displaying the smallest and largest single-precision

% floating point number

str = 'The range for single is:\n\t%g to %g and\n\t %g to %g';

sprintf(str, -realmax('single'), -realmin('single'),
realmin('single'), realmax('single'))

% displaying the smallest and largest double-precision

% floating point number

str = 'The range for double is:\n\t%g to %g and\n\t %g to %g';

sprintf(str, -realmax('double'), -realmin('double'),
realmin('double'), realmax('double'))

When you run the file, it displays the following result —

ans = The range for single is:
-3.40282e+38 to -1.17549e-38 and
1.17549e-38 to 3.40282e+38
ans = The range for double is:

-1.79769e+308 to -2.22507e-308 and
2.22507e-308 to 1.79769e+308

MATLAB - STRINGS

Creating a character string is quite simple in MATLAB. In fact, we have used it many times. For
example, you type the following in the command prompt —

my_string = 'Tutorial's Point'
MATLAB will execute the above statement and return the following result —
my_string = Tutorial's Point

MATLAB considers all variables as arrays, and strings are considered as character arrays. Let us
use the whos command to check the variable created above —

whos

MATLAB will execute the above statement and return the following result —

Name Size Bytes Class Attributes
my_string 1x16 32 char

Interestingly, you can use numeric conversion functions like uint8 or uintl6 to convert the
characters in the string to their numeric codes. The char function converts the integer vector back
to characters —

Example

Create a script file and type the following code into it —

my_string = 'Tutorial''s Point';

str_ascii = uint8(my_string) % 8-bit ascii values
str_back_to_char= char(str_ascii)

str_16bit = uintl6(my_string) % 16-bit ascii values

str_back_to_char = char(str_16bit)
When you run the file, it displays the following result —
str_ascii =
84 117 116 111 114 105 97 108 39 115 32 80 111 105 110 116

str_back_to_char = Tutorial's Point
str_16bit =

84 117 116 111 114 105 97 108 39 115 32 80 111 105 110 116

str_back_to_char = Tutorial's Point

Rectangular Character Array

The strings we have discussed so far are one-dimensional character arrays; however, we need to
store more than that. We need to store more dimensional textual data in our program. This is

achieved by creating rectangular character arrays.

Simplest way of creating a rectangular character array is by concatenating two or more one-
dimensional character arrays, either vertically or horizontally as required.

You can combine strings vertically in either of the following ways —

¢ Using the MATLAB concatenation operator [] and separating each row with a semicolon (;).
Please note that in this method each row must contain the same number of characters. For
strings with different lengths, you should pad with space characters as needed.

e Using the char function. If the strings are of different lengths, char pads the shorter strings
with trailing blanks so that each row has the same number of characters.

Example
Create a script file and type the following code into it —

doc_profile = ['Zara Ali '
'Sr. Surgeon Y
'R N Tagore Cardiology Research Center']
char('zara Ali', 'Sr. Surgeon',

'RN Tagore Cardiology Research Center')

doc_profile

When you run the file, it displays the following result —

doc_profile =

Zara Ali

Sr. Surgeon

R N Tagore Cardiology Research Center
doc_profile =

Zara Ali

Sr. Surgeon

RN Tagore Cardiology Research Center

You can combine strings horizontally in either of the following ways —

e Using the MATLAB concatenation operator, [] and separating the input strings with a comma
or a space. This method preserves any trailing spaces in the input arrays.

¢ Using the string concatenation function, strcat. This method removes trailing spaces in the
inputs.

Example

Create a script file and type the following code into it —

name = 'Zara Ali '
position = 'Sr. Surgeon Y
worksAt = 'R N Tagore Cardiology Research Center';
profile = [name ', ' position ', ' worksAt]

profile = strcat(name, ', ', position, ', ', worksAt)

When you run the file, it displays the following result —

profile = Zara Ali , Sr. Surgeon
, R N Tagore Cardiology Research Center
profile = Zara Ali,Sr. Surgeon,R N Tagore Cardiology Research Center

Combining Strings into a Cell Array

From our previous discussion, it is clear that combining strings with different lengths could be a
pain as all strings in the array has to be of the same length. We have used blank spaces at the end
of strings to equalize their length.

However, a more efficient way to combine the strings is to convert the resulting array into a cell
array.

MATLAB cell array can hold different sizes and types of data in an array. Cell arrays provide a
more flexible way to store strings of varying length.

The cellstr function converts a character array into a cell array of strings.
Example

Create a script file and type the following code into it —

name = 'Zara Ali 'y
position = 'Sr. Surgeon '
worksAt 'R N Tagore Cardiology Research Center';

profile = char(name, position, worksAt);
profile = cellstr(profile);
disp(profile)

When you run the file, it displays the following result —

{

[1,1] = zara Ali

[2,1] = Sr. Surgeon

[3,1] = R N Tagore Cardiology Research Center
}

String Functions in MATLAB

MATLAB provides numerous string functions creating, combining, parsing, comparing and
manipulating strings.

Following table provides brief description of the string functions in MATLAB —

Function Purpose

Functions for storing text in character arrays, combine character arrays, etc.

blanks Create string of blank characters

cellstr Create cell array of strings from character array
char Convert to character array (string)

iscellstr Determine whether inputis cell array of strings
ischar Determine whether item is character array
sprintf Format data into string

strcat Concatenate strings horizontally

strjoin Join strings in cell array into single string

Functions for identifying parts of strings, find and replace substrings

ischar Determine whether item is character array
isletter Array elements that are alphabetic letters
isspace Array elements that are space characters
isstrprop Determine whether string is of specified category

sscanf Read formatted data from string

strfind Find one string within another

strrep Find and replace substring

strsplit Split string at specified delimiter

strtok Selected parts of string

validatestring Check validity of text string

symvar Determine symbolic variables in expression
regexp Match regular expression (case sensitive)
regexpi Match regular expression (case insensitive)
regexprep Replace string using regular expression
regexptranslate Translate string into regular expression

Functions for string comparison

strcmp Compare strings (case sensitive)

strcmpi Compare strings (case insensitive)

strncmp Compare first n characters of strings (case sensitive)
strncmpi Compare first n characters of strings (case insensitive)

Functions for changing string to upper- or lowercase, creating or removing white
space

deblank Strip trailing blanks from end of string

strtrim Remove leading and trailing white space from string
lower Convert string to lowercase

upper Convert string to uppercase

strjust Justify character array
Examples

The following examples illustrate some of the above-mentioned string functions —
Formatting Strings

Create a script file and type the following code into it —

A = pi*1000*ones(1,5);
sprintf (' %f \n %.2f \n %+.2f \n %12.2f \n %012.2f \n', A)

When you run the file, it displays the following result —

ans = 3141.592654
3141.59
+3141.59
3141.59
000003141.59

Joining Strings

Create a script file and type the following code into it —

%cell array of strings
str_array = {'red', 'blue', 'green', 'yellow', 'orange'};

% Join strings in cell array into single string

stri = strjoin(str_array, "-")
str2 = strjoin(str_array, ",")

When you run the file, it displays the following result —

strl
str2

red-blue-green-yellow-orange
red, blue, green, yellow, orange

Finding and Replacing Strings

Create a script file and type the following code into it —

students = {'Zara Ali', 'Neha Bhatnagar',
'Monica Malik', 'Madhu Gautam',
'Madhu Sharma', 'Bhawna Sharma', ...
'Nuha Ali', 'Reva Dutta',
'Sunaina Ali', 'Sofia Kabir'};

% The strrep function searches and replaces sub-string.
new_student = strrep(students(8), 'Reva', 'Poulomi')

% Display first names
first_names = strtok(students)

When you run the file, it displays the following result —

new_student =

{
[1,1] = Poulomi Dutta

}

first _names =

{
[1,1] = Zara
[1,2] = Neha
[1,3] = Monica
[1,4] = Madhu
[1,5] = Madhu
[1,6] = Bhawna
[1,7] = Nuha
[1,8] = Reva
[1,9] = Sunaina
[1,10] = Sofia

}

Comparing Strings

Create a script file and type the following code into it —

strli = 'This is test'

str2 = 'This is text'
if (strcmp(stri, str2))

sprintf('%s and %s are equal', stril, str2)
else

sprintf('%s and %s are not equal', strl, str2)
end

When you run the file, it displays the following result —

stri This is test
str2 This is text
ans = This is test and This is text are not equal

MATLAB - FUNCTIONS

A function is a group of statements that together perform a task. In MATLAB, functions are defined
in separate files. The name of the file and of the function should be the same.

Functions operate on variables within their own workspace, which is also called the local
workspace, separate from the workspace you access at the MATLAB command prompt which is
called the base workspace.

Functions can accept more than one input arguments and may return more than one output
arguments.

Syntax of a function statementis —

function [outl,out2, ..., outN] = myfun(inl,in2,in3, ..., 1inN)

Example

The following function named mymax should be written in a file named mymax.m. It takes five
numbers as argument and returns the maximum of the numbers.

Create a function file, named mymax.m and type the following code in it —

function max = mymax(nl, n2, n3, n4, n5)
%This function calculates the maximum of the
% five numbers given as input
max = ni;
if(n2 > max)

max = n2;
end
if(n3 > max)

max = n3;

end
if(n4 > max)

max = n4;
end
if(n5 > max)

max = n5;
end

The first line of a function starts with the keyword function. It gives the name of the function and
order of arguments. In our example, the mymax function has five input arguments and one output
argument.

The comment lines that come right after the function statement provide the help text. These lines
are printed when you type —

help mymax
MATLAB will execute the above statement and return the following result —

This function calculates the maximum of the
five numbers given as input

You can call the function as —
mymax (34, 78, 89, 23, 11)

MATLAB will execute the above statement and return the following result —

ans = 89

Anonymous Functions

An anonymous function is like an inline function in traditional programming languages, defined
within a single MATLAB statement. It consists of a single MATLAB expression and any number of
input and output arguments.

You can define an anonymous function right at the MATLAB command line or within a function or
script.

This way you can create simple functions without having to create a file for them.

The syntax for creating an anonymous function from an expression is

f = @(arglist)expression

Example

In this example, we will write an anonymous function named power, which will take two numbers
as input and return first number raised to the power of the second number.

Create a script file and type the following code in it —

power = @(x, n) x.An;
resultl = power (7, 3)
result2 power (49, 0.5)
result3 = power (10, -10)
result4 power (4.5, 1.5)

When you run the file, it displays —

resultl = 343
result2 = 7

result3 = 1.0000e-10
result4 = 9.5459

Primary and Sub-Functions

Any function other than an anonymous function must be defined within a file. Each function file
contains a required primary function that appears first and any number of optional sub-functions
that comes after the primary function and used by it.

Primary functions can be called from outside of the file that defines them, either from command
line or from other functions, but sub-functions cannot be called from command line or other
functions, outside the function file.

Sub-functions are visible only to the primary function and other sub-functions within the function
file that defines them.

Example

Let us write a function named quadratic that would calculate the roots of a quadratic equation. The
function would take three inputs, the quadratic co-efficient, the linear co-efficient and the constant
term. It would return the roots.

The function file quadratic.m will contain the primary function quadratic and the sub-function disc,
which calculates the discriminant.

Create a function file quadratic.m and type the following code in it —

function [x1,x2] = quadratic(a,b,c)
%this function returns the roots of
% a quadratic equation.

% It takes 3 input arguments

% which are the co-efficients of x2, x and the
%constant term

% It returns the roots

d = disc(a,b,c);

x1 (-b +d) / (2%a);

X2 (-b - d) / (2%a);

end % end of quadratic

function dis = disc(a, b, c)

%function calculates the discriminant
dis = sqrt(b”r2 - 4*a*c);

end % end of sub-function

You can call the above function from command prompt as —

quadratic(2,4, -4)
MATLAB will execute the above statement and return the following result —

ans = 0.7321

Nested Functions

You can define functions within the body of another function. These are called nested functions. A
nested function contains any or all of the components of any other function.

Nested functions are defined within the scope of another function and they share access to the
containing function's workspace.

A nested function follows the following syntax —

function x = A(p1, p2)
B(p2)
function y = B(p3)
end
end
Example

Let us rewrite the function quadratic, from previous example, however, this time the disc function
will be a nested function.

Create a function file quadratic2.m and type the following code in it —

function [x1,x2] = quadratic2(a,b,c)
function disc % nested function

d = sgrt(bnr2 - 4*a*c);

end % end of function disc

disc;
x1 = b +d)/ (2*a);

X2 = b - d) / (2*a);

end % end of function quadratic2

(_
(_
You can call the above function from command prompt as —

quadratic2(2,4,-4)

MATLAB will execute the above statement and return the following result —

ans = 0.73205

Private Functions

A private function is a primary function that is visible only to a limited group of other functions. If
you do not want to expose the implementation of a function(s), you can create them as private
functions.

Private functions reside in subfolders with the special name private.

They are visible only to functions in the parent folder.

Example

Let us rewrite the quadratic function. This time, however, the disc function calculating the
discriminant, will be a private function.

Create a subfolder named private in working directory. Store the following function file disc.m in it

function dis = disc(a, b,c)

%function calculates the discriminant
dis = sqrt(b”r2 - 4*a*c);

end % end of sub-function

Create a function quadratic3.m in your working directory and type the following code in it —

function [x1,x2] = quadratic3(a,b,c)
%this function returns the roots of
% a quadratic equation.

% It takes 3 input arguments

% which are the co-efficient of x2, x and the
%constant term

% It returns the roots

d = disc(a,b,c);

x1 (-b +d) / (2%a);

X2 (-b - d) / (2*a);

end % end of quadratic3

You can call the above function from command prompt as —
quadratic3(2,4, -4)
MATLAB will execute the above statement and return the following result —

ans = 0.73205

Global Variables

Global variables can be shared by more than one function. For this, you need to declare the
variable as global in all the functions.

If you want to access that variable from the base workspace, then declare the variable at the
command line.

The global declaration must occur before the variable is actually used in a function. Itis a good

practice to use capital letters for the names of global variables to distinguish them from other
variables.

Example

Let us create a function file named average.m and type the following code in it —

function avg = average(nums)
global TOTAL

avg = sum(nums)/TOTAL;

end

Create a script file and type the following code in it —

global TOTAL;

TOTAL = 10;

n = [34, 45, 25, 45, 33, 19, 40, 34, 38, 42];
av = average(n)

When you run the file, it will display the following result —

av = 35.500

MATLAB - DATA IMPORT

Importing data in MATLAB means loading data from an external file. The importdata function
allows loading various data files of different formats. It has the following five forms —

S.N. Function and Description

1
A = importdata(filename)
Loads data into array A from the file denoted by filename.
2
A = importdata('-pastespecial’)
Loads data from the system clipboard rather than from a file.
3
A = importdata(___, delimiterin)
Interprets delimiterin as the column separator in ASCII file, filename, or the clipboard
data. You can use delimiterin with any of the input arguments in the above syntaxes.
4
A = importdata(___, delimiterin, headerlinesin)
Loads data from ASCII file, filename, or the clipboard, reading numeric data starting from
line headerlinesin+1.
5

[A, delimiterOut, headerlinesOut] = importdata(__)

Returns the detected delimiter character for the input ASCII file in delimiterOut and the
detected number of header lines in headerlinesOut, using any of the input arguments in
the previous syntaxes.

By default, Octave does not have support for importdata() function, so you will have to
search and install this package to make following examples work with your Octave
installation.

Example 1

Let us load and display an image file. Create a script file and type the following code in it:

filename = 'smile.jpg';
A = importdata(filename);
image(A);

When you run the file, MATLAB displays the image file. However, you
directory.

must store it in the current

* The stupid smile

:z' you have everytime
.10}

100 E:}‘EE§§\

i (U |

i /

e The person you like
i sends you a text

200 message

m.

20 40 60 B0 10 120 W0 10 180 200

Example 2

In this example, we import a text file and specify Delimiter and Column Header. Let us create a
space-delimited ASCII file with column headers, named weeklydata.txt.

Our text file weeklydata.txt looks like this —

SunDay MonDay TuesDay WednesDay ThursDay FriDay SaturDay

95.01 76.21 61.54 40.57 B8, 7% 70.28 81.53
73.11 45.65 79.19 93.55 75.29 69.87 74.68
60.68 41.85 92.18 91.69 81.32 90.38 74.51
48.60 82.14 73.82 41.03 0.99 67.22 93.18
89.13 44.47 57.63 89.36 13.89 19.88 46.60

Create a script file and type the following code in it —

filename = 'weeklydata.txt';
delimiterIn = ' ';
headerlinesIn = 1;
A = importdata(filename,delimiterIn, headerlinesIn);
% View data
for k = [1:7]
disp(A.colheaders{1, k})
disp(A.data(:, k))
disp(* ")
end

When you run the file, it displays the following result —

SunDay
95.0100
73.1100
60.6800
48.6000
89.1300

MonDay
76.2100
45.6500
41.8500

82.1400
44.4700

TuesDay
61.5400
79.1900
92.1800
73.8200
57.6300

WednesDay
40.5700
93.5500
91.6900
41.0300
89.3600

Thur sDay
55.7900
75.2900
81.3200

0.9900
13.8900

FriDay
70.2800
69.8700
90.3800
67.2200
19.8800

SaturDay
81.5300
74.6800
74.5100

93.1800
46.6000

Example 3

In this example, let us import data from clipboard.
Copy the following lines to the clipboard —
Mathematics is simple

Create a script file and type the following code —
A = importdata('-pastespecial')
When you run the file, it displays the following result —

A =
'Mathematics is simple'

Low-Level File I/O

The importdata function is a high-level function. The low-level file I/O functions in MATLAB allow
the most control over reading or writing data to a file. However, these functions need more
detailed information about your file to work efficiently.

MATLAB provides the following functions for read and write operations at the byte or character
level —

Function Description

fclose Close one or all open files

feof Test for end-of-file

ferror Information about file I/O errors

fgetl Read line from file, removing newline characters
fgets Read line from file, keeping newline characters
fopen Open file, or obtain information about open files
fprintf Write data to text file

fread Read data from binary file

frewind Move file position indicator to beginning of open file
fscanf Read data from text file

fseek Move to specified position in file

ftell Position in open file

fwrite Write data to binary file

Import Text Data Files with Low-Level I/O
MATLAB provides the following functions for low-level import of text data files —
¢ The fscanf function reads formatted data in a text or ASCII file.

¢ The fgetl and fgets functions read one line of a file at a time, where a newline character
separates each line.

e The fread function reads a stream of data at the byte or bit level.
Example

We have a text data file 'myfile.txt' saved in our working directory. The file stores rainfall data for
three months; June, July and August for the year 2012.

The data in myfile.txt contains repeated sets of time, month and rainfall measurements at five
places. The header data stores the number of months M; so we have M sets of measurements.

The file looks like this —

Rainfall Data
Months: June, July, August

M=3

12:00:00

June-2012

17.21 28.52 39.78 16.55 23.67
19.15 0.35 17.57 NaN 12.01
17.92 28.49 17.40 17.06 11.09
9.59 9.33 NaN 0.31 0.23
10.46 13.17 NaN 14.89 19.33
20.97 19.50 17.65 14.45 14.00
18.23 10.34 17.95 16.46 19.34
09:10:02

July-2012

12.76 16.94 14.38 11.86 16.89
20.46 23.17 NaN 24.89 19.33
30.97 49.50 47.65 24.45 34.00
18.23 30.34 27.95 16.46 19.34
30.46 33.17 NaN 34.89 29.33

30.97 49.50 47.65 24.45 34.00
28.67 30.34 27.95 36.46 29.34
15:03:40

August - 2012

17.09 16.55 19.59 17.25 19.22
17.54 11.45 13.48 22.55 24.01
NaN 21.19 25.85 25.05 27.21
26.79 24.98 12.23 16.99 18.67
17.54 11.45 13.48 22.55 24.01
NaN 21.19 25.85 25.05 27.21
26.79 24.98 12.23 16.99 18.67

We will import data from this file and display this data. Take the following steps —

e Open the file with fopen function and get the file identifier.

e Describe the data in the file with format specifiers, such as '%s' for a string, '%d' for an

integer, or '%f' for a floating-point number.

e To skip literal characters in the file, include them in the format description. To skip a data

field, use an asterisk ('*') in the specifier.

For example, to read the headers and return the single value for M, we write:

M = fscanf(fid,

'%*s %*s\n%*s %*s %*s %*s\nM=%d\n\n', 1);

¢ By default, fscanf reads data according to our format description until it does not find any
match for the data, or it reaches the end of the file. Here we will use for loop for reading 3
sets of data and each time, it will read 7 rows and 5 columns.

e We will create a structure named mydata in the workspace to store data read from the file.
This structure has three fields - time, month, and raindata array.

Create a script file and type the following code in it —

filename = '/data/myfile.txt';
rows = 7;
cols = 5;

% open the file
fid = fopen(filename);

% read the file headers, find M (number of months)
M = fscanf(fid,

% read each set of measurements
for n = 1:M
mydata(n).time = fscanf(fid,
mydata(n).month = fscanf(fid,

'‘%s', 1);
%s', 1);

% fscanf fills the array in column order,

% so transpose the results

mydata(n).raindata =
fscanf (fid, '%f', [rows, cols]);

end

for n = 1:M
disp(mydata(n).time), disp(mydata(n).month)
disp(mydata(n).raindata)

end

% close the file
fclose(fid);

When you run the file, it displays the following result —

12:00:00
June-2012

'%*s %*s\n%*s %*s %*s %*s\nM=%d\n\n',

1);

17.2100 17.5700 11.0900 13.1700 14.4500

28.5200 NaN 9.5900 NaN 14.0000
39.7800 12.0100 9.3300 14.8900 18.2300
16.5500 17.9200 NaN 19.3300 10.3400

23.6700 28.4900 0.3100 20.9700 17.9500
19.1500 17.4000 0.2300 19.5000 16.4600
0.3500 17.0600 10.4600 17.6500 19.3400

09:10:02

July-2012
12.7600 NaN 34.0000 33.1700 24.4500
16.9400 24.8900 18.2300 NaN 34.0000

14.3800 19.3300 30.3400 34.8900 28.6700
11.8600 30.9700 27.9500 29.3300 30.3400
16.8900 49.5000 16.4600 30.9700 27.9500
20.4600 47.6500 19.3400 49.5000 36.4600
23.1700 24.4500 30.4600 47.6500 29.3400

15:03:40

August-2012
17.0900 13.4800 27.2100 11.4500 25.0500
16.5500 22.5500 26.7900 13.4800 27.2100
19.5900 24.0100 24.9800 22.5500 26.7900
17.2500 NaN 12.2300 24.0100 24.9800
19.2200 21.1900 16.9900 NaN 12.2300
17.5400 25.8500 18.6700 21.1900 16.9900
11.4500 25.0500 17.5400 25.8500 18.6700

MATLAB - DATA OUTPUT

Data export (or output) in MATLAB means to write into files. MATLAB allows you to use your data in
another application that reads ASCII files. For this, MATLAB provides several data export options.

You can create the following type of files:

e Rectangular, delimited ASCIlI data file from an array.

e Diary (or log) file of keystrokes and the resulting text output.

e Specialized ASCII file using low-level functions such as fprintf.

e MEX-file to access your C/C++ or Fortran routine that writes to a particular text file format.
Apart from this, you can also export data to spreadsheets.
There are two ways to export a numeric array as a delimited ASCII data file —

¢ Using the save function and specifying the -ascii qualifier

e Using the dimwrite function

Syntax for using the save function is:

save my_data.out num_array -ascii

where, my data.out is the delimited ASCII data file created, num_array is a numeric array and
—ascii is the specifier.

Syntax for using the dimwrite function is:

dlmwrite('my_data.out', num_array, 'dlm_char')

where, my data.out is the delimited ASCII data file created, num_array is a numeric array and
dim_char is the delimiter character.

Example

The following example demonstrates the concept. Create a script file and type the following code

num_array = [1 23 4 ; 456 7; 789 0];
save array_datal.out num_array -ascii;

type array_datal.out
dlmwrite('array_data2.out', num_array, ' ');
type array_data2.out

When you run the file, it displays the following result —

1.0000000e+00 2.0000000e+00 3.0000000e+00 4.0000000e+00
4.0000000e+00 5.0000000e+00 6.0000000e+00 7.0000000e+00
7.0000000e+00 8.0000000e+00 9.0000000e+00 0.0000000e+00

1234
4567
78 9 0

Please note that the save -ascii command and the dimwrite function does not work with cell arrays
as input. To create a delimited ASCII file from the contents of a cell array, you can

e Either, convert the cell array to a matrix using the cell2mat function
¢ Or exportthe cell array using low-level file I/O functions.

If you use the save function to write a character array to an ASCII file, it writes the ASCII equivalent
of the characters to the file.

For example, let us write the word 'hello' to a file —
h = 'hello';

save textdata.out h -ascii
type textdata.out

MATLAB executes the above statements and displays the following result. which is the characters
of the string 'hello' in 8-digit ASCII format.

1.0400000e+02 1.01600000e+02 1.0800000e+02 1.0800000e+02 1.11600000e+02

Writing to Diary Files

Diary files are activity logs of your MATLAB session. The diary function creates an exact copy of
your session in a disk file, excluding graphics.

To turn on the diary function, type —
diary

Optionally, you can give the name of the log file, say —
diary logdata.out

To turn off the diary function —
diary off

You can open the diary file in a text editor.

Exporting Data to Text Data Files with Low-Level 1/O

So far, we have exported numeric arrays. However, you may need to create other text files,
including combinations of numeric and character data, nonrectangular output files, or files with

non-ASCIl encoding schemes. For these purposes, MATLAB provides the low-level fprintf function.
As in low-level I/O file activities, before exporting, you need to open or create a file with the fopen
function and get the file identifier. By default, fopen opens a file for read-only access. You should
specify the permission to write or append, such as 'w' or 'a'.

After processing the file, you need to close it with fclose(fid) function.

The following example demonstrates the concept —
Example

Create a script file and type the following code in it —
% create a matrix y, with two rows

X 0:10:100;
y = [x; log(x)];

% open a file for writing
fid = fopen('logtable.txt', 'w');

% Table Header
fprintf(fid, 'Log Function\n\n');

% print values in column order

% two values appear on each row of the file
fprintf(fid, '%f %t\n', y);

fclose(fid);

% display the file created

type logtable.txt

When you run the file, it displays the following result —

Log Function

0.000000 -Inf

10.000000 2.302585
20.000000 2.995732
30.000000 3.401197
40.000000 3.688879
50.000000 3.912023
60.000000 4.094345
70.000000 4.248495
80.000000 4.382027
90.000000 4.499810

100.000000 4.605170

MATLAB - PLOTTING

To plot the graph of a function, you need to take the following steps —

¢ Define x, by specifying the range of values for the variable x, for which the function is to be
plotted

e Define the function, y = f(x)
¢ Call the plot command, as plot(x, y)

Following example would demonstrate the concept. Let us plot the simple function y = x for the
range of values for x from 0 to 100, with an increment of 5.

Create a script file and type the following code —

X

[0:5:100];
y = X,
plot(x, vy)

When you run the file, MATLAB displays the following plot —

100
a0} o
80} 7

10 F ol

60+ Pl

50 d

40} -

30 P

20} i

10 F /

u"" 1 L 1 L

a 10 20 30 40 5 60 T 80 %0

Let us take one more example to plot the function y = x2. In this example, we will draw two graphs
with the same function, but in second time, we will reduce the value of increment. Please note that
as we decrease the increment, the graph becomes smoother.

Create a script file and type the following code —

X
X

[1 234567 89 10];
[-100:20:100];
X.N2;

y
plot(x, y)
When you run the file, MATLAB displays the following plot —

10000 T T T T L] T T T T

9000 -
8000 b \
Jo000F

5000

5000 - \%.\ /
4000+ \

3000 -
2000} " V4

1000 N /
.

-60

-qﬂﬂ -BII:I 100

Change the code file a little, reduce the incrementto 5 —

X = [-100:5:100];
y = X.N2,
plot(x, vy)

MATLAB draws a smoother graph —

l“mﬂnrl\ R Li L R L] L] T T T A

2000 | 4
\

TO00 \ 1

6000 - 1

2000 \ P4 E

1000 + \x_x / -

-FIEH:I -80 60 40 -20 0 20 40 60 80 100

Adding Title, Labels, Grid Lines and Scaling on the Graph

MATLAB allows you to add title, labels along the x-axis and y-axis, grid lines and also to adjust the
axes to spruce up the graph.

The xlabel and ylabel commands generate labels along x-axis and y-axis.
The title command allows you to put a title on the graph.
The grid on command allows you to put the grid lines on the graph.

The axis equal command allows generating the plot with the same scale factors and the
spaces on both axes.

The axis square command generates a square plot.

Example

Create a script file and type the following code —

[0:0.01:10]7;

X
y = sin(x);

plot(x, y), xlabel('x'), ylabel('Sin(x)'), title('Sin(x) Graph'),
grid on, axis equal

MATLAB generates the following graph —

Sinjx) Graph

! : ! ! ! !] L !
2 _. ‘ -
i o A i
':E'] 3 -\. - e -
] i i LY
i s 2
21 s i
- | SRS VRN (U SOt (e ..- -

1 1 1 1 : 1 1 1
0 1 2 3 4 6 T B8 g9 10

Drawing Multiple Functions on the Same Graph

You can draw multiple graphs on the same plot. The following example demonstrates the concept

Example
Create a script file and type the following code —

X [6 : 0.01: 10];

y = sin(x);
g = cos(x);
plot(x, vy, x, g, '.-'), legend('Sin(x)"', 'Cos(x)")

MATLAB generates the following graph —

P —— . m

P % _/

J \ / Sin(x)
EY \ / | —— costn}
06t 'IIIII‘ -.Il\l -t

Al | \ A
0 A I|'I I'uL J \l
o2}/ \ / \

02
04t \ | \

06

T—
—
o

0.8

-
M

Setting Colors on Graph

MATLAB provides eight basic color options for drawing graphs. The following table shows the
colors and their codes —

Code Color

w White
Black

b Blue

r Red

C Cyan

g Green

m Magenta

y Yellow

Example

Let us draw the graph of two polynomials

o f(x)=3x%+ 2x3+ 7x%2 + 2x + 9 and
e g(x)=5x3+ 9x + 2

Create a script file and type the following code —

X = [-10 : 0.01: 10];
y = 3*X.M +2 * X N3 +7 * xX.N2+2* x +9;
g=5% X.A3+9 * x + 2;

plot(x, y, 'r', x, g, 'g")
When you run the file, MATLAB generates the following graph —

x 10

35
dr H

250

2\ .-". A
15} '
1t ¢ / |
05}

of — — 1

S 1

':'m -é-ﬁa;-é ﬁ 2& Eém

Setting Axis Scales

The axis command allows you to set the axis scales. You can provide minimum and maximum
values for x and y axes using the axis command in the following way:

axis ([xmin Xmax ymin ymax])

The following example shows this —

Example

Create a script file and type the following code —
X = [0 : 0.01: 10];

y = exp(-x).* sin(2*x + 3);

plot(x, y), axis([0 10 -1 1])

When you run the file, MATLAB generates the following graph —

1

08} .
06} .
04} ;

0.2+ -

0 %'. / o N

D2} / -

-04-‘1_;"’ i

0.8 g

Generating Sub-Plots

When you create an array of plots in the same figure, each of these plots is called a subplot. The
subplot command is used for creating subplots.

Syntax for the command is —

subplot(m, n, p)

where, m and n are the number of rows and columns of the plot array and p specifies where to put
a particular plot.

Each plot created with the subplot command can have its own characteristics. Following example
demonstrates the concept —

Example

Let us generate two plots —

y = e~ 1:5%sin(10x)

y = e~2%sin(10x)

Create a script file and type the following code —
X [0:0.01:5];

y exp(-1.5*x).*sin(10*x);

subplot(1,2,1)

plot(x,y), xlabel('x'),ylabel('exp(-1.5x)*sin(10x)"'),axis([® 5 -1 1])
y = exp(-2*x).*sin(10*x);

subplot(1, 2, 2)
plot(x,y),xlabel('x"),ylabel('exp(-2x)*sin(10x)"'),axis([0@ 5 -1 1])

When you run the file, MATLAB generates the following graph —

0.8 - 0et .
06 ’| - ns\ :
M| 04‘ .
g oo | S 02}
===l] =00 |
& L f - [
= ot|l ||I'. My I || e
] LT = [AL = N
- \ i [
+ 02} g 02} || -
b | & ||
= |
44.J o4l Vv]
0.6} : 06+ 4
0.8] aosl]
=1 i i i i =1 i i
8 1 2 3 4 5 0 1 2 3 4 5

MATLAB - GRAPHICS

This chapter will continue exploring the plotting and graphics capabilities of MATLAB. We will
discuss —

e Drawing bar charts

¢ Drawing contours

e Three dimensional plots
Drawing Bar Charts

The bar command draws a two dimensional bar chart. Let us take up an example to demonstrate
the idea.

Example

Let us have an imaginary classroom with 10 students. We know the percent of marks obtained by
these students are 75, 58, 90, 87, 50, 85, 92, 75, 60 and 95. We will draw the bar chart for this data.

Create a script file and type the following code —

X = [1:10];

y = [75, 58, 90, 87, 50, 85, 92, 75, 60, 95];
bar(x,y), xlabel('Student'),ylabel('Score'),
title('First Sem:')

print -deps graph.eps

When you run the file, MATLAB displays the following bar chart —

Farst Sem:

Score

Student

Drawing Contours

A contour line of a function of two variables is a curve along which the function has a constant
value. Contour lines are used for creating contour maps by joining points of equal elevation above
a given level, such as mean sea level.

MATLAB provides a contour function for drawing contour maps.

Example

Let us generate a contour map that shows the contour lines for a given function g = f(x, y). This
function has two variables. So, we will have to generate two independent variables, i.e., two data
sets x and y. This is done by calling the meshgrid command.

The meshgrid command is used for generating a matrix of elements that give the range over x
and y along with the specification of increment in each case.

Let us plot our function g = f(x, y), where =5 = x =5, -3 =y =< 3. Letus take an increment of 0.1
for both the values. The variables are set as —

[x,y] = meshgrid(-5:0.1:5, -3:0.1:3);

Lastly, we need to assign the function. Let our function be: x2 + y?2

Create a script file and type the following code —

[x,y] = meshgrid(-5:0.1:5,-3:0.1:3); %independent variables

g = X.N2 + y.N2; % our function

contour(x,y, Q) % call the contour function
print -deps graph.eps

When you run the file, MATLAB displays the following contour map —

T m——

Let us modify the code a little to spruce up the map

[x,y] = meshgrid(-5:0.1:5,-3:0.1:3); %independent variables

g = X.N2 + y.N2; % our function

[C, h] = contour(x,y,q); % call the contour function
set(h, 'ShowText', 'on', 'TextStep', get(h, 'LevelStep')*2)

print -deps graph.eps

When you run the file, MATLAB displays the following contour map —

3' T T T =T T o= T T T T
I - . \
' -
! b

e
s
—10-
20

Three Dimensional Plots

Three-dimensional plots basically display a surface defined by a function in two variables, g = f
(xy).

As before, to define g, we first create a set of (x,y) points over the domain of the function using the
meshgrid command. Next, we assign the function itself. Finally, we use the surf command to
create a surface plot.

The following example demonstrates the concept —

Example

. 2,2
Let us create a 3D surface map for the function g = xe"*” + ¥

Create a script file and type the following code —

[X,y] = meshgrid(-2:.2:2);
g = X .* exp(-x.r"2 - y.N2);
surf(x, y, g)

print -deps graph.eps

When you run the file, MATLAB displays the following 3-D map —

s

You can also use the mesh command to generate a three-dimensional surface. However, the surf
command displays both the connecting lines and the faces of the surface in color, whereas, the
mesh command creates a wireframe surface with colored lines connecting the defining points.

MATLAB - ALGEBRA

So far, we have seen that all the examples work in MATLAB as well as its GNU, alternatively called
Octave. But for solving basic algebraic equations, both MATLAB and Octave are little different, so
we will try to cover MATLAB and Octave in separate sections.

We will also discuss factorizing and simplification of algebraic expressions.
Solving Basic Algebraic Equations in MATLAB

The solve function is used for solving algebraic equations. In its simplest form, the solve function
takes the equation enclosed in quotes as an argument.

For example, let us solve for x in the equation x-5 =0

solve('x-5=0")

MATLAB will execute the above statement and return the following result —

ans =
5

You can also call the solve function as —

y = solve('x-5 = 0")
MATLAB will execute the above statement and return the following result —

y =
5

You may even not include the right hand side of the equation —

solve('x-5")
MATLAB will execute the above statement and return the following result —

ans =
5

If the equation involves multiple symbols, then MATLAB by default assumes that you are solving for
X, however, the solve function has another form —

solve(equation, variable)

where, you can also mention the variable.

For example, let us solve the equation v - u - 3t2 = 0, for v. In this case, we should write —
solve('v-u-3*tnA2=0"', 'v')

MATLAB will execute the above statement and return the following result —

ans =
3*tA2 + u

Solving Basic Algebraic Equations in Octave

The roots function is used for solving algebraic equations in Octave and you can write above
examples as follows:

For example, let us solve for x in the equation x-5 =10

roots([1, -5])
Octave will execute the above statement and return the following result —
ans = 5

You can also call the solve function as —

y = roots([1, -5])

Octave will execute the above statement and return the following result —
y =5

Solving Quadratic Equations in MATLAB

The solve function can also solve higher order equations. It is often used to solve quadratic
equations. The function returns the roots of the equation in an array.

The following example solves the quadratic equation x2 -7x +12 = 0. Create a script file and type
the following code —

eq = 'xN2 -7*x + 12 = 0';

s = solve(eq);

disp('The first root is: '), disp(s(1));
disp('The second root is: '), disp(s(2));

When you run the file, it displays the following result —

The first root is:
3

The second root is:
4

Solving Quadratic Equations in Octave

The following example solves the quadratic equation x2 -7x +12 = 0 in Octave. Create a script file
and type the following code —

s = roots([1, -7, 12]);

disp('The first root is: ')
disp('The second root is:

, disp(s(1));
), disp(s(2));

When you run the file, it displays the following result —

The first root is:
4

The second root is:
3

Solving Higher Order Equations in MATLAB

The solve function can also solve higher order equations. For example, let us solve a cubic
equation as (x-3)2(x-7) = 0

solve (' (x-3)A2* (x-7)=0")

MATLAB will execute the above statement and return the following result —

ans
3
3
7

In case of higher order equations, roots are long containing many terms. You can get the
numerical value of such roots by converting them to double. The following example solves the

fourth order equation x* — 7x3 + 3x2 — 5x + 9 = 0.

Create a script file and type the following code —

eq = 'xXN4 - 7*XA3 + 3*XxN2 - 5*x + 9 = 0';

s = solve(eq);

disp('The first root is: '), disp(s(1));

disp('The second root is: '), disp(s(2));

disp('The third root is: '), disp(s(3));

disp('The fourth root is: '), disp(s(4));

% converting the roots to double type

disp('Numeric value of first root'), disp(double(s(1)))
disp('Numeric value of second root'), disp(double(s(2))
disp('Numeric value of third root'), disp(double(s(3)))
disp('Numeric value of fourth root'), disp(double(s(4))

When you run the file, it returns the following result —

The first root is:
6.630396332390718431485053218985
The second root is:
1.0597804633025896291682772499885
The third root is:
- 0.34508839784665403032666523448675 - 1.0778362954630176596831109269793*1i
The fourth root is:
- 0.34508839784665403032666523448675 + 1.0778362954630176596831109269793* 1
Numeric value of first root
6.6304
Numeric value of second root
1.0598
Numeric value of third root
-0.3451 - 1.07781
Numeric value of fourth root
-0.3451 + 1.07781

Please note that the last two roots are complex numbers.
Solving Higher Order Equations in Octave

The following example solves the fourth order equation x* — 7x3 + 3x2 — 5x + 9 = 0.

Create a script file and type the following code —

\% [11 '71 3/ '51 9]/

S roots(v);

% converting the roots to double type

disp('Numeric value of first root'), disp(double(s(1)))

disp('Numeric value of second root'), disp(double(s(2)));
))
)

disp('Numeric value of third root'), disp(double(s(3)
disp('Numeric value of fourth root'), disp(double(s(4

When you run the file, it returns the following result —

Numeric value of first root
6.6304

Numeric value of second root
-0.34509 + 1.077841i

Numeric value of third root
-0.34509 - 1.077841i

Numeric value of fourth root
1.0598

Solving System of Equations in MATLAB

The solve function can also be used to generate solutions of systems of equations involving more
than one variables. Let us take up a simple example to demonstrate this use.

Let us solve the equations —

5x+ 9y =5
3x-6y=4
Create a script file and type the following code —

s = solve('5*x + 9*y = 5','3*x - 6*y = 4');

S.
S.

< Xl

When you run the file, it displays the following result —

ans =
22/19

ans =

-5/57

In same way, you can solve larger linear systems. Consider the following set of equations —
X+ 3y-2z=5

3X+5y+6z2=7

2x+ 4y +3z=8

Solving System of Equations in Octave

We have a little different approach to solve a system of 'n' linear equations in 'n' unknowns. Let us
take up a simple example to demonstrate this use.

Let us solve the equations —

5x+ 9y =5

3x-6y=4

Such a system of linear equations can be written as the single matrix equation Ax = b, where A is
the coefficient matrix, b is the column vector containing the right-hand side of the linear equations

and x is the column vector representing the solution as shown in the below program —

Create a script file and type the following code —

A =[5 9; 3, -6];
b = [5;4];
A\Db

When you run the file, it displays the following result —

ans =

1.157895
-0.087719

In same way, you can solve larger linear systems as given below —
X+ 3y-2z=5

3X+5y+6z2=7

2X+ 4y + 3z2=8

Expanding and Collecting Equations in MATLAB

The expand and the collect function expands and collects an equation respectively. The following
example demonstrates the concepts —

When you work with many symbolic functions, you should declare that your variables are symbolic.

Create a script file and type the following code —

syms X %symbolic variable x
syms y %symbolic variable x

% expanding equations
expand((x-5)* (x+9))

expand ((x+2)* (x-3)* (x-5)* (x+7))
expand(sin(2*x))
expand(cos(x+y))

% collecting equations

collect(x"A3 *(x-7))
collect(xMN4* (x-3)* (x-5))

When you run the file, it displays the following result —

ans =
XNA2 + 4*Xx - 45

ans =

XN4 + XN3 - 43*xN2 + 23*x + 210
ans =

2*cos(x)*sin(x)

ans =

cos(x)*cos(y) - sin(x)*sin(y)
ans =

XN4 - T*XNA3

ans =

XA6 - 8*XA5 + 15*xN4

Expanding and Collecting Equations in Octave

You need to have symbolic package, which provides expand and the collect function to expand
and collect an equation, respectively. The following example demonstrates the concepts —

When you work with many symbolic functions, you should declare that your variables are symbolic
but Octave has different approach to define symbolic variables. Notice the use of Sin and Cos,
which are also defined in symbolic package.

Create a script file and type the following code —

% first of all load the package, make sure its installed.
pkg load symbolic

% make symbols module available
symbols

% define symbolic variables
sym ('x");
sym ('y');
sym ('z');

N < X
([|

% expanding equations
expand((x-5)* (x+9))

expand ((x+2)* (x-3)* (x-5)* (x+7))
expand (Sin(2*x))

expand (Cos(x+y))

% collecting equations

collect(x”A3 *(x-7), z)
collect(x”"4* (x-3)*(x-5), z)

When you run the file, it displays the following result —

ans =

-45,0+xN\2+(4.0)* X
ans =

210.0+xN4-(43.0)* XA2+xXN3+(23.0)* X
ans =

sin((2.0)*x)
ans =

cos(y+x)
ans =

XN (3.0)* (-7.0+x)
ans =

(-3.04X)* XA (4.0)* (-5.0+X)

Factorization and Simplification of Algebraic Expressions

The factor function factorizes an expression and the simplify function simplifies an expression.
The following example demonstrates the concept —

Example

Create a script file and type the following code —

syms X
syms y

factor (xA3 - yA3)

factor ([xN2-yA2, xA3+yA3])
simplify((xN4-16)/(xA2-4))

When you run the file, it displays the following result —

ans =

(X - y)*(XA2 + x*y + yAn2)

ans =

[(X - y)*(X +Yy), (X +y)"(xr2 - x*y + yr2)]
ans =

XN2 + 4

MATLAB - CALCULUS

MATLAB provides various ways for solving problems of differential and integral calculus, solving
differential equations of any degree and calculation of limits. Best of all, you can easily plot the
graphs of complex functions and check maxima, minima and other stationery points on a graph by
solving the original function, as well as its derivative.

This chapter will deal with problems of calculus. In this chapter, we will discuss pre-calculus
concepts i.e., calculating limits of functions and verifying the properties of limits.

In the next chapter Differential, we will compute derivative of an expression and find the local
maxima and minima on a graph. We will also discuss solving differential equations.

Finally, in the Integration chapter, we will discuss integral calculus.

Calculating Limits

MATLAB provides the limit function for calculating limits. In its most basic form, the limit function
takes expression as an argument and finds the limit of the expression as the independent variable
goes to zero.

For example, let us calculate the limit of a function f(x) = (x3 + 5)/(x* + 7), as x tends to zero.

syms X
1imit((xA3 + 5)/(xA4 + 7))

MATLAB will execute the above statement and return the following result —

ans =
5/7

The limit function falls in the realm of symbolic computing; you need to use the syms function to
tell MATLAB which symbolic variables you are using. You can also compute limit of a function, as
the variable tends to some number other than zero. To calculate lim x.s5(f(x)), we use the limit

command with arguments. The first being the expression and the second is the number, that x
approaches, here itis a.

For example, let us calculate limit of a function f(x) = (x-3)/(x-1), as x tends to 1.

limit((x - 3)/(x-1),1)
MATLAB will execute the above statement and return the following result —

ans =
NaN

Let's take another example,

limit(x"2 + 5, 3)
MATLAB will execute the above statement and return the following result —

ans =
14

Calculating Limits using Octave

Following is Octave version of the above example using symbolic package, try to execute and
compare the result —

pkg load symbolic
symbols
x=sym("x");

subs((xA3+5)/ (x"N4+7),X,0)
Octave will execute the above statement and return the following result —

ans =
0.7142857142857142857

Verification of Basic Properties of Limits

Algebraic Limit Theorem provides some basic properties of limits. These are as follows —

lim (f(z) +g(z)) = Im f(z)+ lim ()

lm (/(2)~g(2)) = lm f(z) - lim g(a)
Im (flzlga)) = Jm fo)-lings)
im (f\m)faz)) = lmfi))linga)

Let us consider two functions —
e f(x) =(3x+ 5)/(x-3)
e g(x)=x% + 1.

Let us calculate the limits of the functions as x tends to 5, of both functions and verify the basic
properties of limits using these two functions and MATLAB.

Example
Create a script file and type the following code into it —

syms X

f = (3*x + 5)/(x-3);

g = X2 + 1;

11 limit(f, 4)

12 = 1limit (g, 4)

1Add = limit(f + g, 4)
1Sub = limit(f - g, 4)
IMult = limit(f*g, 4)
1Div = limit (f/g, 4)

When you run the file, it displays —

11 =
17

12 =
17

1Add
34

1Sub
0

1Mult
289

1Div =
1

Verification of Basic Properties of Limits using Octave

Following is Octave version of the above example using symbolic package, try to execute and
compare the result —

pkg load symbolic

symbols

x = sym("x");

f = (8*x + 5)/(x-3);
g = X2 + 1;

li=subs(f, x, 4)

12 = subs (g, X, 4)

1Add subs (f+g, x, 4)

1Sub subs (f-g, x, 4)

IMult = subs (f*g, x, 4)
1Div = subs (f/g, x, 4)

Octave will execute the above statement and return the following result —

11 =

17.0
12

17.0
1Add

34.0
1Sub =

0.0
1IMult =

289.0
1Div =

1.0

Left and Right Sided Limits

When a function has a discontinuity for some particular value of the variable, the limit does not
exist at that point. In other words, limits of a function f(x) has discontinuity at x = a, when the value
of limit, as x approaches x from left side, does not equal the value of the limit as x approaches
from right side.

This leads to the concept of left-handed and right-handed limits. A left-handed limit is defined as
the limit as x -> a, from the left, i.e., x approaches a, for values of x < a. A right-handed limit is
defined as the limitas x -> a, from the right, i.e., x approaches a, for values of x > a. When the left-
handed limit and right-handed limit are not equal, the limit does not exist.

Let us consider a function —
f(x) = (x - 3)/|x - 3]
We will show that limy_~3 f(x) does not exist. MATLAB helps us to establish this fact in two ways —

e By plotting the graph of the function and showing the discontinuity.

e By computing the limits and showing that both are different.

The left-handed and right-handed limits are computed by passing the character strings 'left' and
‘right' to the limit command as the last argument.

Example

Create a script file and type the following code into it —
f = (x - 3)/abs(x-3);

ezplot(f,[-1,5])

1 = limit(f,x,3, 'left")
r = limit(f,x,3, 'right')

When you run the file, MATLAB draws the following plot

{x = 3yabs(x - 3)

05+ 1

05+ .

MATLAB - DIFFERENTIAL

MATLAB provides the diff command for computing symbolic derivatives. In its simplest form, you
pass the function you want to differentiate to diff command as an argument.

For example, let us compute the derivative of the function f(t) = 3t2 + 2t2

Example

Create a script file and type the following code into it —

syms t
f = 3*tA2 + 2*tA(-2);
diff(f)

When the above code is compiled and executed, it produces the following result —

ans =
6*t - 4/tA3

Following is Octave equivalent of the above calculation —

pkg load symbolic
symbols

sym("t"),;

3*EA2 + 2% tA(-2);

t =
f =
differentiate(f, t)

Octave executes the code and returns the following result —

ans =

-(4.0)*tA(-3.0)+(6.0)*t

Verification of Elementary Rules of Differentiation

Let us briefly state various equations or rules for differentiation of functions and verify these rules.
For this purpose, we will write f'(x) for a first order derivative and f"(x) for a second order
derivative.

Following are the rules for differentiation —
Rule 1

For any functions f and g and any real numbers a and b are the derivative of the function:

h(x) = af(x) + bg(x) with respectto x is given by —

h'(x) = af'(x) + bg'(x)
Rule 2

The sum and subtraction rules state that if f and g are two functions, f' and g' are their
derivatives respectively, then,

f+g)=f+g9g'
(f-g)=f-¢'
Rule 3

The product rule states thatif f and g are two functions, f' and g' are their derivatives respectively,
then,

(fg) =f.g+g9g'.f
Rule 4

The quotient rule states that if f and g are two functions, f' and g' are their derivatives
respectively, then,

(f/g)' = (f'.g - g'.f)/g?

Rule 5

The polynomial or elementary power rule states that, if y = f(x) = x", then f' = n. x(n-1)

A direct outcome of this rule is that the derivative of any constantis zero, i.e., ify = k, any
constant, then

f=0
Rule 6

The chain rule states that, derivative of the function of a function h(x) = f(g(x)) with respect to x
is,

h'(x)= f'(g(x)).g'(x)
Example
Create a script file and type the following code into it —

syms X
syms t

f = (x + 2)*(x72 + 3)

derl = diff(f)

f = (th2 + 3)* (sqrt(t) + tA3)

der2 = diff(f)

f = (XA2 - 2*X + 1)*(3*XA3 - 5*xA2 + 2)
der3 = diff(f)

f = (2*xN2 + 3*x)/(X"3 + 1)

derd4 = diff(f)

f = (xA2 + 1)M17

der5 = diff(f)

f = (tA3 + 3* tA2 + 5*t -9)A(-6)

der6 = diff(f)

When you run the file, MATLAB displays the following result —

f =
(xA2 + 3)*(x + 2)

derl =
2*X* (X + 2) + xA2 + 3

f =
(tA(1/2) + tA3)* (tA2 + 3)

der2 =
(tA2 + 3)*(3*tA2 + 1/(2*tA(1/2))) + 2*t* (tA(1/2) + tA3)

f =
(XxA2 - 2*x + 1)*(3*XA3 - 5*xA2 + 2)

der3 =
(2*x - 2)*(3*XxXN3 - 5*xN2 + 2) - (- 9*xN2 + 10*Xx)*(xN2 - 2*x + 1)

f =
(2*xN2 + 3*Xx)/(xN3 + 1)

der4 =
(4*x + 3)/(XA3 + 1) - (3*xN2* (2*XxN2 + 3*X))/(XA3 + 1)A2

f =
(xA2 + 1)A17

der5 =
34*x* (xA2 + 1)716

f =
1/(tA3 + 3%tA2 + 5*t - 9)AG

der6 =
-(6*(3*thr2 + 6*t + 5))/(tA3 + 3*tA2 + 5*t - 9)A7

Following is Octave equivalent of the above calculation —

pkg load symbolic

symbols

X:Sym(llxll);

tzsym("t"”

f = (x + 2)*(x 2 + 3)

derl = differentiate(f, x)

f = (th2 + 3)*(tA(1/2) + tA3)
der2 = differentiate(f, t)

f = (XA2 - 2*X + 1)*(3*XA3 - 5*xA2 + 2)
der3 = differentiate(f, x)

f = (2*xN2 + 3*Xx)/(X"3 + 1)
der4 = differentiate(f, x)

f = (xA2 + 1)r17

der5 = differentiate(f, x)

f = (t"3 + 3* tA2 + 5%t -9)N(-6)
der6é = differentiate(f,t)

Octave executes the code and returns the following result —
f =

(2.0+x)* (3.0+x7(2.0))
derl =

3.0+xA(2.0)+(2.0)* (2.0+x)*x

7 =

(tA(3.0)+sqrt(t))* (3.0+tA(2.0))
der2 =

(2.0)* (tA(3.0)+sqrt(t))* t+((3.0)* tA(2.0)+(0.5)* tA(-0.5))* (3.0+tA(2.0))
f =

(1.04x7(2.0)-(2.0)*%X)*(2.0-(5.0)*x"N(2.0)+(3.0)*x"(3.0))
der3 =

(-2.0+(2.0)*X)* (2.0-(5.0)* XA (2.0)+(3.0)*XA(3.0))+((9.0)* XA (2.0)- (10.0)*X)* (1.0+x(2.0)-
(2.0)%x)
f =

(1.0+xXNA (3.0))M(-1)* ((2.0)*xN(2.0)+(3.0)*x)
der4 =

(1.04XA(3.0))A(=1)* (3.04(4.0)*X)- (3.0)* (1.0+XA(3.0))A(~2)* XA (2.0)* ((2.0)* XA (2.0)+(3.0)*X)
f =

(1.0+x7(2.0))7(17.0)
der5 =

(34.0)* (1.0+x7(2.0))N(16.0)*x
f =

(-9.0+(3.0)*tA(2.0)+tA(3.0)+(5.0)*t)N(-6.0)
der6 =

-(6.0)*(-9.0+(3.0)* tA(2.0)+tA(3.0)+(5.0)*t)A(-7.0)* (5.0+(3.0)* tA(2.0)+(6.0)* t)

Derivatives of Exponential, Logarithmic and Trigonometric Functions

The following table provides the derivatives of commonly used exponential, logarithmic and
trigonometric functions —

Function Derivative

ca-x c@XIn c.a (In is natural logarithm)
eX eX

In x 1/x

Inex 1/x.Inc

xX x*.(1 + In x)

sin(x) cos(x)

cos(x) -sin(x)

tan(x) sec?(x), or 1/cos?(x), or 1 + tan?(x)
cot(x) -csc?(x), or -1/sin?(x), or -(1 + cot?(x))
sec(x) sec(x).tan(x)

csc(x) -csc(x).cot(x)

Example

Create a script file and type the following code into it —

syms X
y = exp(x)
diff(y)
y = XA9
diff(y)
y = sin(x)

diff(y)

y = tan(x)
diff(y)

y = cos(x)
diff(y)

y = log(x)
diff(y)

y = log10(x)
diff(y)

y = sin(x)A"2
diff(y)

Yy = COS(3*XN2 + 2*x + 1)
diff(y)

y = exp(x)/sin(x)
diff(y)

When you run the file, MATLAB displays the following result —

y =
exp(x)
ans =
exp(x)

y:

XN9
ans =
9* xN8

y:
sin(x)
ans =
cos(x)

y:

tan(x)

ans =
tan(x)"2 + 1

y:
cos(x)
ans =
-sin(x)

log(x)
ans =
1/x

y_
log(x)/1log(10)
ans =
1/(x*1log(10))

sin(x)An2
ans =
2*cos(x)*sin(x)

y:

COS(3*XN2 + 2*x + 1)
ans =
-sin(3*xN2 + 2*x + 1)*(6*x + 2)

e;p(x)/sin(x)
ans =
exp(x)/sin(x) - (exp(x)*cos(x))/sin(x)"2

Following is Octave equivalent of the above calculation —

pkg load symbolic

symbols
x = sym("x");
y = Exp(x)

differentiate(y, x)

y = XA9
differentiate(y, x)

y = Sin(x)
differentiate(y, x)

y = Tan(x)
differentiate(y, x)

y = Cos(x)
differentiate(y, x)

y = Log(x)
differentiate(y, x)

% symbolic packages does not have this support
%y = Log10(x)
%differentiate(y, x)

y = Sin(x)A2
differentiate(y, x)

y = Cos(3*xN2 + 2*x + 1)
differentiate(y, x)

y = Exp(x)/Sin(x)
differentiate(y, x)

Octave executes the code and returns the following result —

y:

exp(x)
ans =

exp(x)
y:

XN (9.0)
ans =
(9.0)*xN(8.0)
y:
sin(x)

ans =
cos(x)
y:
tan(x)

ans =
1+tan(x)N2
y:

cos(x)
ans =

-sin(x)
y:

log(x)
ans =

xn(-1)
y =

sin(x)N(2.0)
ans =

(2.0)*sin(x)*cos(x)
y:

C0S(1.0+(2.0)*x+(3.0)*xN(2.0))
ans =

-(2.0+(6.0)*x)*sin(1.0+(2.0)*x+(3.0)*xA(2.0))
y =]

sin(x)A(-1)*exp(x)
ans =

sin(x)A(-1)*exp(x)-sin(x)A(-2)*cos(x)*exp(x)
Computing Higher Order Derivatives
To compute higher derivatives of a function f, we use the syntax diff(f,n).
Let us compute the second derivative of the function y = f(x) = x .e™3%

f = x*exp(-3*x);
diff(f, 2)

MATLAB executes the code and returns the following result —

ans =
9*x*exp(-3*x) - 6*exp(-3*x)

Following is Octave equivalent of the above calculation —

pkg load symbolic

symbols
X = sym("x");
f = X*Exp(-3*x);

differentiate(f, x, 2)

Octave executes the code and returns the following result —
ans =

(9.0)*exp(-(3.0)*x)*x-(6.0)*exp(-(3.0)*x)

Example

In this example, let us solve a problem. Given that a functiony = f(x) = 3 sin(x) + 7 cos(5x). We
will have to find out whether the equation f* + f = -5co0s(2x) holds true.

Create a script file and type the following code into it —

syms X

y = 3*sin(x)+7*cos(5*x); % defining the function
lhs = diff(y, 2)+y; %evaluting the lhs of the equation
rhs = -5*cos(2*x); %rhs of the equation
if(isequal(lhs, rhs))
disp('Yes, the equation holds true');
else
disp('No, the equation does not hold true');
end
disp('value of LHS is: '), disp(lhs);

When you run the file, it displays the following result —

No, the equation does not hold true
Value of LHS is:
-168*cos(5*x)

Following is Octave equivalent of the above calculation —

pkg load symbolic

symbols

X = sym(llxll);

y = 3*Sin(x)+7*Cos(5*x); % defining the function

lhs = differentiate(y, x, 2) + y; %evaluting the lhs of the equation
rhs = -5*Cos(2*x); %rhs of the equation

if(1lhs == rhs)
disp('Yes, the equation holds true');
else
disp('No, the equation does not hold true');

end
disp('value of LHS is: '), disp(lhs);

Octave executes the code and returns the following result —

No, the equation does not hold true
Value of LHS is:
-(168.0)*cos((5.0)*x)

Finding the Maxima and Minima of a Curve

If we are searching for the local maxima and minima for a graph, we are basically looking for the
highest or lowest points on the graph of the function at a particular locality, or for a particular
range of values of the symbolic variable.

For a function y = f(x) the points on the graph where the graph has zero slope are called
stationary points. In other words stationary points are where f'(x) = 0.

To find the stationary points of a function we differentiate, we need to set the derivative equal to
zero and solve the equation.

Example

Let us find the stationary points of the function f(x) = 2x3 + 3x2 — 12x + 17
Take the following steps —

First let us enter the function and plot its graph.

syms X
y = 2*xXA3 + 3*xN2 - 12*x + 17; % defining the function
ezplot(y)

MATLAB executes the code and returns the following plot —

IxZ-12x+22+ 17

500} : : A

a0} /
300 £ =

200 f 1

100 / -

a0t .

200} / :

-300 .

Here is Octave equivalent code for the above example —

pkg load symbolic

symbols
X = sym('x");
y = inline("2*xA3 + 3*xANA2 - 12*x + 17");

ezplot(y)
print -deps graph.eps

Our aim is to find some local maxima and minima on the graph, so let us find the local
maxima and minima for the interval [-2, 2] on the graph.

syms x
y = 2*XA3 + 3*xN2 - 12*x + 17; % defining the function
ezplot(y, ['21 2])

MATLAB executes the code and returns the following plot —

3 12x+2C+17

dn L T T T L] T L

-
B/ :
a0t 1

'\\\\
25 4 1
~.\\
20t
R Y
165 \\ ff 4
;.
&

10} g 1

2 15 1 05 [i] 05 1 15 2

Here is Octave equivalent code for the above example —

pkg load symbolic

symbols

X
y

sym('x"');
inline("2*xA3 + 3*xA2 - 12*x + 17");

ezplot(y, ['2/ 2])
print -deps graph.eps

Next, let us compute the derivative.
g = diff(y)
MATLAB executes the code and returns the following result —

g:

6*XN2 + 6*x - 12
Here is Octave equivalent of the above calculation —

pkg load symbolic

symbols
x = sym("x");
y 2¥XN3 + 3*xA2 - 12*x + 17;

g differentiate(y, x)

Octave executes the code and returns the following result —

g:

-12.0+(6.0)*x+(6.0)*x"(2.0)
Let us solve the derivative function, g, to get the values where it becomes zero.
s = solve(g)

MATLAB executes the code and returns the following result —

S

N R

Following is Octave equivalent of the above calculation —

pkg load symbolic
symbols

sym("x");

X

y = 2*XA3 + 3*xN2 - 12*x + 17;
g differentiate(y, x)
roots([6, 6, -12])

Octave executes the code and returns the following result —

g:

-12.0+(6.0)* XA (2.0)+(6.0)*X
ans =

=2
1

This agrees with our plot. So let us evaluate the function f at the critical pointsx =1, -
2. We can substitute a value in a symbolic function by using the subs command.

subs(y, 1), subs(y, -2)

MATLAB executes the code and returns the following result —

ans
10
ans
37

Following is Octave equivalent of the above calculation —

pkg load symbolic
symbols

X = sym("x");

2*XN3 + 3*xN2 - 12*x + 17;
differentiate(y, x)

y
9
roots([6, 6, -12])

subs(y, x, 1), subs(y, X, -2)

ans =

10.0
ans =

37.0-4.6734207789940138748E-18*1

Therefore, The minimum and maximum values on the function f(x) = 2x3 + 3x2 — 12x + 17, in the
interval [-2,2] are 10 and 37.

Solving Differential Equations
MATLAB provides the dsolve command for solving differential equations symbolically.

The most basic form of the dsolve command for finding the solution to a single equation is

dsolve('eqn')

where egn is a text string used to enter the equation.

It returns a symbolic solution with a set of arbitrary constants that MATLAB labels C1, C2, and so
on.

You can also specify initial and boundary conditions for the problem, as comma-delimited list
following the equation as —

dsolve('eqn', 'cond1', 'cond2',..)

For the purpose of using dsolve command, derivatives are indicated with a D. For example, an
equation like f'(t) = -2*f + cost(t) is entered as —

'Df = -2*%f + cos(t)'
Higher derivatives are indicated by following D by the order of the derivative.

For example the equation f"(x) + 2f'(x) = 5sin3x should be entered as —

'D2y + 2Dy = 5*sin(3*x)’

Let us take up a simple example of a first order differential equation: y' = 5y.

s = dsolve('Dy = 5*y")
MATLAB executes the code and returns the following result —

S =
C2*exp(5*t)

Let us take up another example of a second order differential equation as: y"-y =0, y(0) = -1,
y'(0) = 2.

dsolve('D2y - y = 0','y(0) = -1','Dy(0) = 2')

MATLAB executes the code and returns the following result —

ans =
exp(t)/2 - (3*exp(-t))/2

MATLAB - INTEGRATION

Integration deals with two essentially different types of problems.

¢ In the first type, derivative of a function is given and we want to find the function. Therefore,
we basically reverse the process of differentiation. This reverse process is known as anti-
differentiation, or finding the primitive function, or finding an indefinite integral.

e The second type of problems involve adding up a very large number of very small quantities
and then taking a limit as the size of the quantities approaches zero, while the number of
terms tend to infinity. This process leads to the definition of the definite integral.

Definite integrals are used for finding area, volume, center of gravity, moment of inertia, work
done by a force, and in numerous other applications.

Finding Indefinite Integral Using MATLAB

By definition, if the derivative of a function f(x) is f'(x), then we say that an indefinite integral of f'(x)
with respect to x is f(x). For example, since the derivative (with respect to x) of x2 is 2x, we can say
that an indefinite integral of 2x is x2.

In symbols —
f'(x2) = 2x, therefore,
[2xdx = x2.

Indefinite integral is not unique, because derivative of x2 + ¢, for any value of a constant ¢, will
also be 2x.

This is expressed in symbols as —
[2xdx = x2 + c.
Where, c is called an 'arbitrary constant'.

MATLAB provides an int command for calculating integral of an expression. To derive an
expression for the indefinite integral of a function, we write —

int(f);

For example, from our previous example —

syms X
int(2*x)

MATLAB executes the above statement and returns the following result —

ans =
XN2

Example 1

In this example, let us find the integral of some commonly used expressions. Create a script file
and type the following code in it —

syms X n
int(sym(xAn))

f = 'sin(n*t)'
int(sym(f))

syms a t
int(a*cos(pi*t))
int(a’rx)

When you run the file, it displays the following result —

ans =
piecewise([n == -1, log(x)], [n ~= -1, xA(n + 1)/(n + 1)])
sin(n*t)
ans =
-cos(n*t)/n
ans =
(a*sin(pi*t))/pi
ans =
arx/log(a)

Example 2
Create a script file and type the following code in it —

syms X n
int(cos(x))

int(exp(x))

int(log(x))

int(x/A-1)

int(xA5*cos(5*x))

pretty(int(xA5*cos(5*x)))

int(xA-5)

int(sec(x)"2)

pretty(int(1 - 10*x + 9 * xA2))

int((3 + 5*x -6*XN2 - 7*XxN3)/2*xN2)
pretty(int((3 + 5*x -6*xNA2 - 7*XN3)/2*xN2))

Note that the pretty function returns an expression in a more readable format.

When you run the file, it displays the following result —

ans =

sin(x)

ans =

exp(x)

ans =

x*(log(x) - 1)

ans =

log(x)

ans =

(24*cos(5*x))/3125 + (24*x*sin(5*x))/625 - (12*xAN2*cos(5*x))/125 + (xM4*cos(5*x))/5 -
(4*xn3*sin(5*x))/25 + (xA5*sin(5*x))/5

24 cos(5 x) 24 x sin(5 x) 12 X 2cos(5 X) X 1105(5 X)
T T 625 - 125 CTTeTT '
3 5
4 x sin(5 x) X sin(5 x)
_____________ b ommemmeeoos
25 5

ans =
-1/(4*xn4)
ans =
tan(x)

2
Xx (3 x -5x+1)

ans =
- (7*x76)/12 - (3*XAB)/5 + (5*XA4)/8 + xA3/2

6 5 4 3

7 X 3 X 5 X X
o S

12 5 8 2

Finding Definite Integral Using MATLAB

By definition, definite integral is basically the limit of a sum. We use definite integrals to find areas
such as the area between a curve and the x-axis and the area between two curves. Definite
integrals can also be used in other situations, where the quantity required can be expressed as the
limit of a sum.

The int function can be used for definite integration by passing the limits over which you want to
calculate the integral.

To calculate

[7 f(x)dx = f{b) - fla)

we write,
int(x, a, b)

For example, to calculate the value of

we write —

int(x, 4, 9)
MATLAB executes the above statement and returns the following result —

ans =
65/2

Following is Octave equivalent of the above calculation —

pkg load symbolic
symbols

x = sym("x");
f = x;

c = [1, o];
integral = polyint(c);

a = polyval(integral, 9) - polyval(integral, 4);

display('Area: '), disp(double(a));
Octave executes the code and returns the following result —

Area:

32.500

An alternative solution can be given using quad() function provided by Octave as follows —

pkg load symbolic
symbols

f = inline("x");
[a, ierror, nfneval] = quad(f, 4, 9);

display('Area: '), disp(double(a));
Octave executes the code and returns the following result —

Area:

32.500

Example 1

Let us calculate the area enclosed between the x-axis, and the curve y = x3—2x+5 and the
ordinatesx =1 and x = 2.

The required area is given by —

A=[(x®— 2x + 5)dx

Create a script file and type the following code —

f = xA3 - 2*x +5;
a = int(f, 1, 2)
display('Area: '), disp(double(a));

When you run the file, it displays the following result —

a =

23/4

Area:
5.7500

Following is Octave equivalent of the above calculation —

pkg load symbolic
symbols

x = sym("x");
f = xA3 - 2*x +5;

c = [1, O[_21 5];
integral = polyint(c);

a = polyval(integral, 2) - polyval(integral, 1);
display('Area: '), disp(double(a));
Octave executes the code and returns the following result —
Area:
5.7500
An alternative solution can be given using quad() function provided by Octave as follows —

pkg load symbolic
symbols

X = sym("x");
f = inline("xA3 - 2*x +5");

[a, ierror, nfneval] = quad(f, 1, 2);
display('Area: '), disp(double(a));

Octave executes the code and returns the following result —
Area:

5.7500
Example 2

Find the area under the curve: f(x) = x2 cos(x) for -4 = x < 9.

Create a script file and write the following code —

f = xA2*cos(x);

ezplot(f, [-4,9])
a = int(f, -4, 9)
disp('Area: '), disp(double(a));

When you run the file, MATLAB plots the graph —

x2 cos(x)

40} Y

0t o
20} / \
10} / II'
| [
o Nyt \

=20 |

|

40} %

The outputis given below —

a =
8*cos(4) + 18*cos(9) + 14*sin(4) + 79*sin(9)

Area:
0.3326

Following is Octave equivalent of the above calculation —

pkg load symbolic

symbols
X = Sym("X");
f = inline("xA2*cos(x)");

ezplot(f, [-4,9])
print -deps graph.eps

[a, ierror, nfneval] = quad(f, -4, 9);

display('Area: '), disp(double(a));

MATLAB - POLYNOMIALS

MATLAB represents polynomials as row vectors containing coefficients ordered by descending
powers. For example, the equation P(x) = x* + 7x3 - 5x + 9 could be represented as —

p=[170-59]
Evaluating Polynomials

The polyval function is used for evaluating a polynomial at a specified value. For example, to
evaluate our previous polynomial p, at x = 4, type —

p=[170 -529];
polyval(p, 4)

MATLAB executes the above statements and returns the following result —

ans = 693

MATLAB also provides the polyvalm function for evaluating a matrix polynomial. A matrix
polynomial is a polynomial with matrices as variables.

For example, let us create a square matrix X and evaluate the polynomial p, at X —

p=[170 -509];
X=[12-34;,2-5623;3102;5-738];
polyvalm(p, X)

MATLAB executes the above statements and returns the following result —

ans =
2307 -1769 -939 4499
2314 -2376 -249 4695
2256 -1892 -549 4310
4570 -4532 -1062 9269

Finding the Roots of Polynomials

The roots function calculates the roots of a polynomial. For example, to calculate the roots of our
polynomial p, type —

[170 -509];
roots(p)

p
-

MATLAB executes the above statements and returns the following result —

r =
-6.8661

+ 0.00001
-1.4247 + 0.00001
0.6454 + 0.7095i
0.6454 - 0.7095i

The function poly is an inverse of the roots function and returns to the polynomial coefficients. For
example —

p2 = poly(r)
MATLAB executes the above statements and returns the following result —
p2 =
Columns 1 through 3:
1.00000 + 0.000001 7.00000 + 0.000001 0.00000 + 0.000001

Columns 4 and 5:

-5.00000 - 0.000001 9.00000 + 0.000001

Polynomial Curve Fitting

The polyfit function finds the coefficients of a polynomial that fits a set of data in a least-squares
sense. If x and y are two vectors containing the x and y data to be fitted to a n-degree polynomial,
then we get the polynomial fitting the data by writing —

p = polyfit(x,y,n)

Example
Create a script file and type the following code —

x =[123456];y=[5.543.1128 290.7 498.4 978.67]; %data
p polyfit(x,y,4) %get the polynomial

% Compute the values of the polyfit estimate over a finer range,
% and plot the estimate over the real data values for comparison:
X2 = 1:.1:6;

y2 = polyval(p, x2);

plot(x,y, ‘o', x2,y2)

grid on

When you run the file, MATLAB displays the following result —

p:
4.1056 -47.9607 222.2598 -362.7453 191.1250

And plots the following graph —

e ' T ¢ ot .t T ot —d
| - _______ _______ _______ d
E,:H:._
N VO S A . S G

emeBerrrredeememedernreerhennme ke memn o

1| R

! | | | |
L 55 &

[0 SRR N
B3

i

wl-

et

-

S

.

i

-
1 15

MATLAB - TRANSFORMS

MATLAB provides command for working with transforms, such as the Laplace and Fourier
transforms. Transforms are used in science and engineering as a tool for simplifying analysis and
look at data from another angle.

For example, the Fourier transform allows us to convert a signal represented as a function of time
to a function of frequency. Laplace transform allows us to convert a differential equation to an
algebraic equation.

MATLAB provides the laplace, fourier and fft commands to work with Laplace, Fourier and Fast
Fourier transforms.

The Laplace Transform

The Laplace transform of a function of time f(t) is given by the following integral —

(0} =J, f(t).e~*dt

Laplace transform is also denoted as transform of f(t) to F(s). You can see this transform or

integration process converts f(t), a function of the symbolic variable t, into another function F(s),
with another variable s.

Laplace transform turns differential equations into algebraic ones. To compute a Laplace
transform of a function f(t), write —

laplace(f(t))

Example
In this example, we will compute the Laplace transform of some commonly used functions.

Create a script file and type the following code —

syms stabw
laplace(a)
laplace(t/r2)
laplace (t"9)
laplace(exp(-b*t))
laplace(sin(w*t))
laplace(cos(w*t))

When you run the file, it displays the following result —

ans =
1/sh2

ans =
2/sN\3

ans =
362880/s710

ans =
1/(b + s)

ans =
w/ (sh2 + wh2)

ans =
s/ (sh2 + wh2)

The Inverse Laplace Transform
MATLAB allows us to compute the inverse Laplace transform using the command ilaplace.

For example,
ilaplace(1/s"3)
MATLAB will execute the above statement and display the result —

ans =
th2/2

Example
Create a script file and type the following code —

syms st abw
ilaplace(1/s/7)
ilaplace(2/(w+s))
ilaplace(s/(s"2+4))
ilaplace(exp(-b*t))

ilaplace(w/(s"2 + wA2))
ilaplace(s/(s"2 + w/2))

When you run the file, it displays the following result —

ans =
tA6/720

ans =
2*exp(-t*w)

ans =
cos(2*t)

ans =
ilaplace(exp(-b*t), t, x)

ans =
sin(t*w)

ans =
cos(t*w)

The Fourier Transforms
Fourier transforms commonly transforms a mathematical function of time, f(t), into a new function,
sometimes denoted by or F, whose argument is frequency with units of cycles/s (hertz) or radians

per second. The new function is then known as the Fourier transform and/or the frequency
spectrum of the function f.

Example
Create a script file and type the following code in it —

syms X

f = exp(-2*x72); %our function
ezplot(f,[-2,2]) % plot of our function
FT = fourier(f) % Fourier transform

When you run the file, MATLAB plots the following graph —

exp(-2 xz}

0.8

T
—
o
L

’ \
06} /f \

/
rI 1‘-\
04} / \
JIIII \
/
0.21 j LY .
/ ¥
.a-*/ \“m,__
0f———>" —
2 -1.5 1 0.5 0 0.5 1 15 2

The following result is displayed —

FT =
(27 (1/2)* pin(1/2)* exp(-wA2/8))/2

Plotting the Fourier transform as —
ezplot(FT)
Gives the following graph —

(212 12 axp(-wli8))2

12} Y e -
r %
' % 1

08 /

T T
B
.H-\'\-_
=
-
1 1

0.6

T
T
-
]

04

q L

Inverse Fourier Transforms

MATLAB provides the ifourier command for computing the inverse Fourier transform of a
function. For example,

f = ifourier(-2*exp(-abs(w)))
MATLAB will execute the above statement and display the result —

f =
S2/(pi* (xA2 + 1))

MATLAB - GNU OCTAVE TUTORIAL

GNU Octave is a high-level programming language like MATLAB and it is mostly compatible with
MATLAB. It is also used for numerical computations.

Octave has the following common features with MATLAB —

e matrices are fundamental data type
e it has built-in support for complex numbers
e it has built-in math functions and libraries

e it supports user-defined functions

GNU Octave is also freely redistributable software. You may redistribute it and/or modify it under
the terms of the GNU General Public License (GPL) as published by the Free Software Foundation.

MATLAB vs Octave

Most MATLAB programs run in Octave, but some of the Octave programs may not run in MATLAB
because, Octave allows some syntax that MATLAB does not.

For example, MATLAB supports single quotes only, but Octave supports both single and double
quotes for defining strings. If you are looking for a tutorial on Octave, then kindly go through this
tutorial from beginning which covers both MATLAB as well as Octave.

Compatible Examples

Almost all the examples covered in this tutorial are compatible with MATLAB as well as Octave.
Let's try following example in MATLAB and Octave which produces same result without any syntax

changes —

This example creates a 3D surface map for the function g = xe'(x2 + yz). Create a script file and
type the following code —

[X,y] = meshgrid(-2:.2:2);
g = X .* exp(-x.r"2 - y.N2);
surf(x, y, g)

print -deps graph.eps

When you run the file, MATLAB displays the following 3-D map —

Non-compatible Examples

Though all the core functionality of MATLAB is available in Octave, there are some functionality for
example, Differential & Integration Calculus, which does not match exactly in both the languages.
This tutorial has tried to give both type of examples where they differed in their syntax.

Consider following example where MATLAB and Octave make use of different functions to get the
area of a curve: f(x) = x2 cos(x) for —4 = x < 9. Following is MATLAB version of the code —

f = xA2*cos(x);

ezplot(f, [-4,9])

a = int(f, -4, 9)

disp('Area: '), disp(double(a));

When you run the file, MATLAB plots the graph —

* cos{x)

40 Fat

. /\

x| A
10t / \

| [
0t~ e |

\
|

40} X |

The following result is displayed
a =
8*cos(4) + 18*cos(9) + 14*sin(4) + 79*sin(9)

Area:
0.3326

But to give area of the same curve in Octave, you will have to make use of symbolic package as
follows —

pkg load symbolic
symbols

X Sym(llxll);
f = inline("xA2*cos(x)");

ezplot(f, [-4,9])
print -deps graph.eps

[a, ierror, nfneval] = quad(f, -4, 9);

display('Area: '), disp(double(a));

MATLAB - SIMULINK

Simulink is a simulation and model-based design environment for dynamic and embedded
systems, integrated with MATLAB. Simulink, also developed by MathWorks, is a data flow graphical
programming language tool for modelling, simulating and analyzing multi-domain dynamic
systems. It is basically a graphical block diagramming tool with customizable set of block libraries.

It allows you to incorporate MATLAB algorithms into models as well as export the simulation results
into MATLAB for further analysis.

Simulink supports —

¢ system-level design
e simulation
e automatic code generation

e testing and verification of embedded systems

There are several other add-on products provided by MathWorks and third-party hardware and
software products that are available for use with Simulink.

The following list gives brief description of some of them —

¢ Stateflow allows developing state machines and flow charts.

¢ Simulink Coder allows the generation of C source code for real-time implementation of
systems automatically.

e xPC Target together with x86-based real-time systems provide an environment to
simulate and test Simulink and Stateflow models in real-time on the physical system.

e Embedded Coder supports specific embedded targets.
¢ HDL Coder allows to automatically generate synthesizable VHDL and Verilog.
¢ SimEvents provides a library of graphical building blocks for modelling queuing systems.

Simulink is capable of systematic verification and validation of models through modelling style
checking, requirements traceability and model coverage analysis.

Simulink Design Verifier allows you to identify design errors and to generate test case scenarios
for model checking.

Using Simulink
To open Simulink, type in the MATLAB work space —

simulink

Simulink opens with the Library Browser. The Library Browser is used for building simulation
models.

e

]} Simulink l.ibﬁll‘)l' 1

File Edit View Help
Bl 3 » Enter search term - # 5

Libraries: Library: Simulink | Saarch Results: (none) Fraquently Ussd |
+ [Pl Simulink - —
Commenly Used Blocks) & L ::‘:;':““b' Used E
Continuous
Discontinuities
Dizcrete Continusus

Logic and Bit Operations| b
Lookup Tables

Math Operations E
Model Verification

Discoatinuities

Model-Wide Uitilities o
Ports & Subsystems e
Signal Attributes -
Signal Routing Y Legieand Bit
Sinks = Operations E
Sources
User-Defined Functions
s ; wiul Lookup Tabl
_© Additional Math & Discr s
[*&) Aerospace Blockset
[Communications Systen I; ':":'"“" .
(*a| Computer Vision Systerr sy
[*a| Control System Toolbox |
| Mozl
Eﬂ Dsp S‘ﬁtem Toolbox EJ uaﬁﬁ.:miun
*a| Embedded Coder
% LUDELYUI;?HH': Toolbox = r:lllni:;i?::'-'i-n
1 I1
*&| Image Acquisition Toolb
"a| Instrurnent Control Tooll Pors &
Subsystems

*&| Model Predictive Contro
E‘ Meural Metwork Toolbox
"a| OPC Toolbox

[*a| Real-Time Windows Tarc
*a| Report Generator

*a| Robust Control Toolbox =

Fl i 3 -

Signal Attributes

3 BE B2

Signal Routing

Showina: Simulink

On the left side window pane, you will find several libraries categorized on the basis of various
systems, clicking on each one will display the design blocks on the right window pane.

Building Models

To create a new model, click the New button on the Library Browser's toolbar. This opens a new
untitled model window.

[B [dn few Duplay Ogem Smutston gnalys Code ook e i

EAL He-= CRIC I — o @- - |

| ekl B swenir - ult;—d

i urteied & Fy{uninied --l

a i
E2
= i
=«

Faady 108 adwld

S

A Simulink model is a block diagram.

Model elements are added by selecting the appropriate elements from the Library Browser and
dragging them into the Model window.

Alternately, you can copy the model elements and paste them into the model window.
Examples

Drag and drop items from the Simulink library to make your project.

For the purpose of this example, two blocks will be used for the simulation - A Source (a signal)
and a Sink (a scope). A signal generator (the source) generates an analog signal, which will then
be graphically visualized by the scope(the sink).

_ibrares . Library: Simulink | Search Resuls: (none)] Frequently Used |
- .
Commaonly Used Blocks :;:umh" oo F\-_ Cantinesus
Continwous -
Discontimuitiss
Discrete Disentinuities F\- Discrete
Logic and Bit Operations .
Lockup Tables - +
Math Operations i = ;ﬁ:::f : N Lockup Tebles
Model Venfication
Model-Wide Utilities = hath E Mogel
Ports & Subsystems + X Cparalions Varificaticn
Signal Attnbutes !
Signal Routing MedalkWide Ports &
ks e Utilities '@ Bubsysiems
Sources
U'su_' I?Ef'"'!d F”"ﬂm_'“ E Signal Attributes @ Signal Routing
I Additional Math & Discrete B
Aerospace Blockset
Communications System Toolbao b Sinks -;,K‘ Burtas
Computer Vision System Toolbox e
Control System Toalbox User-Dafinad Fq Additians] Math
D3P System Toolbex Funchions (™ & Discete
%8| Embedded Coder T
» Fuzzy Logic Toolbox
= LAME Nlnackins

Begin by dragging the required blocks from the library to the project window. Then, connect the

blocks together which can be done by dragging connectors from connection points on one block to
those of another.

Let us drag a 'Sine Wave' block into the model.

Logic and Bit Operations
Loockup Tables

—
.I'Hl.I‘H] Counter Free-

Math Operations I Rinning
Maodel Verification
Model-Wide Utilities

1234 B Digital Clodk

Ports & Subsystems
Signal Attributes

Signal Routing .
Sinks M

Uszer-Defined Functions
[Additional Math & Discrete

m

[+ Ground

—]
b |*a| Aerospace Blockset
I» i Communications System Toolbox ﬂ_ﬂ > Pulse Generator
b [*a| Computer Vision System Toolbox
*a| Control System Toolbox Randam
b [*a| DSP System Toolbox 'M P Rt
> i Embedded Coder
b [*a| Fuzzy Logic Toolbox E} Repesting Se-
b i HOL Verifier quence Interp...
*a| Image Acquisition Toolbox
*&| Instrument Control Toolbox “ﬁ s} Signal Builder
i Model Predictive Control Toolbox
> i Meural Metwork Toolbox
*a| OPC Toolbox — H'Ur Sine Wave
*a| Real-Time Windows Target
i Report Generator w Unifoemn Rar-
i Reobust Control Toolbox " dom Number
I P4l SimEvents
Select 'Sinks' from the library and drag a 'Scope' block into the model.
Libraries | Library: Simuink/Sinks | Search Resuts: (none) | Freq 4 §
a (R Simulink .
Commenly Used Blocks [@ Cisplay @ Flagting Seope
Continuous
Discontinuities
Discrete (1) ow @ Seope
Logic and Eit Operations
Lookup Tables
Math Operations Stap Simulation)@ Tesrrbnmbor
Model Venfication
Meodel-Wide Utilities
Ports & Subsystemns To Flle To Worspace

Signal Attnbutes

Signal Routini Bl v araph

Sources
User-Defined Functions

Drag a signal line from the output of the Sine Wave block to the input of the Scope block.
File Edit View Display Diagram Simulation Analysis Code Tools Help
- HE =y P z —
bz - & w8 -5 4O P @~ wo
Model Browser = untited

untitled] untitled
3 ﬁu [
— Sine Wave Scope

Model Browser = | untitled
"] untitled @ [P untithed
K
= By T
— Sine Wave Soope

Run the simulation by pressing the 'Run' button, keeping all parameters default (you can change
them from the Simulation menu)

You should get the below graph from the scope.

Be|([{w i DR BEBaeF -

