- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
$ \mathrm{D} $ is a point on side $ \mathrm{QR} $ of $ \triangle \mathrm{PQR} $ such that $ \mathrm{PD} \perp \mathrm{QR} $. Will it be correct to say that $ \triangle \mathrm{PQD} \sim \triangle \mathrm{RPD} $ ? Why?
Given:
\( \mathrm{D} \) is a point on side \( \mathrm{QR} \) of \( \triangle \mathrm{PQR} \) such that \( \mathrm{PD} \perp \mathrm{QR} \).
To do:
We have to find whether \( \triangle \mathrm{PQD} \sim \triangle \mathrm{RPD} \).
Solution:
In $\triangle PQD$ and $\triangle RPD$,
$PD = PD$ (Common side)
$\angle PDQ = \angle PDR=90^o$
Here,
No other sides or angles are equal, so we can say that $\triangle PQD$ is not similar to $\triangle RPD$.
- Related Articles
- Choose the correct answer from the given four options:If in two triangles \( \mathrm{ABC} \) and \( \mathrm{PQR}, \frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{PR}}=\frac{\mathrm{CA}}{\mathrm{PQ}} \), then(A) \( \triangle \mathrm{PQR} \sim \triangle \mathrm{CAB} \)(B) \( \triangle \mathrm{PQR} \sim \triangle \mathrm{ABC} \)(C) \( \triangle \mathrm{CBA} \sim \triangle \mathrm{PQR} \)(D) \( \triangle \mathrm{BCA} \sim \triangle \mathrm{PQR} \)
- In \( \Delta \mathrm{PQR}, \mathrm{PD} \perp \mathrm{QR} \) such that \( \mathrm{D} \) lies on \( \mathrm{QR} \). If \( \mathrm{PQ}=a, \mathrm{PR}=b, \mathrm{QD}=c \) and \( \mathrm{DR}=d \), prove that \( (a+b)(a-b)=(c+d)(c-d) \).
- It is given that \( \triangle \mathrm{DEF} \sim \triangle \mathrm{RPQ} \). Is it true to say that \( \angle \mathrm{D}=\angle \mathrm{R} \) and \( \angle \mathrm{F}=\angle \mathrm{P} \) ? Why?
- In a \( \Delta \mathrm{PQR}, \mathrm{PR}^{2}-\mathrm{PQ}^{2}=\mathrm{QR}^{2} \) and \( \mathrm{M} \) is a point on side \( \mathrm{PR} \) such that \( \mathrm{QM} \perp \mathrm{PR} \).Prove that \( \mathrm{QM}^{2}=\mathrm{PM} \times \mathrm{MR} \).
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} . \quad \) If \( \quad \mathrm{AB}+\mathrm{BC}=12 \mathrm{~cm} \) \( \mathrm{PQ}+\mathrm{QR}=15 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), find \( \mathrm{PR} \).
- In \( \triangle \mathrm{PQR}, \quad \angle \mathrm{P}=\angle \mathrm{Q}+\angle \mathrm{R}, \mathrm{PQ}=7 \) and \( \mathrm{QR}=25 \). Find the perimeter of \( \triangle \mathrm{PQR} \).
- Two sides \( \mathrm{AB} \) and \( \mathrm{BC} \) and median \( \mathrm{AM} \) of one triangle \( \mathrm{ABC} \) are respectively equal to sides \( \mathrm{PQ} \) and \( \mathrm{QR} \) and median \( \mathrm{PN} \) of \( \triangle \mathrm{PQR} \) (see Fig. 7.40). Show that:(i) \( \triangle \mathrm{ABM} \equiv \triangle \mathrm{PQN} \)(ii) \( \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} \)"\n
- In figure below, if \( \angle \mathrm{D}=\angle \mathrm{C} \), then is it true that \( \triangle \mathrm{ADE} \sim \triangle \mathrm{ACB} ? \) Why?"
- Construct a triangle \( \mathrm{PQR} \) in which \( \mathrm{QR}=6 \mathrm{~cm}, \angle \mathrm{Q}=60^{\circ} \) and \( \mathrm{PR}-\mathrm{PQ}=2 \mathrm{~cm} \).
- \( \triangle \mathrm{PQR} \sim \triangle \mathrm{ZYX} . \quad \) If \( \mathrm{PQ}: \mathrm{ZY}=5: 3 \) and \( \mathrm{PR}=10 \mathrm{~cm} \), find \( \mathrm{ZX} \).
- Choose the correct answer from the given four options:If \( S \) is a point on side \( P Q \) of a \( \triangle P Q R \) such that \( P S=Q S=R S \), then(A) \( \mathrm{PR}, \mathrm{QR}=\mathrm{RS}^{2} \)(B) \( \mathrm{QS}^{2}+\mathrm{RS}^{2}=\mathrm{QR}^{2} \)(C) \( \mathrm{PR}^{2}+\mathrm{QR}^{2}=\mathrm{PQ}^{2} \)(D) \( \mathrm{PS}^{2}+\mathrm{RS}^{2}=\mathrm{PR}^{2} \)
- In right triangle \( \mathrm{ABC} \), right angled at \( \mathrm{C}, \mathrm{M} \) is the mid-point of hypotenuse \( \mathrm{AB} \). \( \mathrm{C} \) is joined to \( \mathrm{M} \) and produced to a point \( \mathrm{D} \) such that \( \mathrm{DM}=\mathrm{CM} \). Point \( \mathrm{D} \) is joined to point \( \mathrm{B} \) (see Fig. 7.23). Show that:(i) \( \triangle \mathrm{AMC} \equiv \triangle \mathrm{BMD} \)(ii) \( \angle \mathrm{DBC} \) is a right angle.(iii) \( \triangle \mathrm{DBC} \equiv \triangle \mathrm{ACB} \)(iv) \( \mathrm{CM}=\frac{1}{2} \mathrm{AB} \)"
- \( \triangle \mathrm{ABC} \) is an isosceles triangle in which \( \mathrm{AB}=\mathrm{AC} \). Side \( \mathrm{BA} \) is produced to \( \mathrm{D} \) such that \( \mathrm{AD}=\mathrm{AB} \) (see Fig. 7.34). Show that \( \angle \mathrm{BCD} \) is a right angle."\n
- \( \mathrm{AB} \) is a line segment and \( \mathrm{P} \) is its mid-point. \( \mathrm{D} \) and \( \mathrm{E} \) are points on the same side of \( \mathrm{AB} \) such that \( \angle \mathrm{BAD}=\angle \mathrm{ABE} \) and \( \angle \mathrm{EPA}=\angle \mathrm{DPB} \) (see Fig. 7.22). Show that(i) \( \triangle \mathrm{DAP} \cong \triangle \mathrm{EBP} \)(ii) \( \mathrm{AD}=\mathrm{BE} \)"\n
- In Fig. 6.44, the side \( \mathrm{QR} \) of \( \triangle \mathrm{PQR} \) is produced to a point \( \mathrm{S} \). If the bisectors of \( \angle \mathrm{PQR} \) and \( \angle \) PRS meet at point \( T \), then prove that \( \angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR} \)"\n

Advertisements