Hands-On Big Data Analytics with PySpark
Analyze large datasets and discover techniques for testing, immunizing, and parallelizing Spark jobs
About the Book
Book description
Use PySpark to easily crush messy data at-scale and discover proven techniques to create testable, immutable, and easily parallelizable Spark jobs
Key Features
- Work with large amounts of agile data using distributed datasets and in-memory caching
- Source data from all popular data hosting platforms, such as HDFS, Hive, JSON, and S3
- Employ the easy-to-use PySpark API to deploy big data Analytics for production
Book Description
Apache Spark is an open source parallel-processing framework that has been around for quite some time now. One of the many uses of Apache Spark is for data analytics applications across clustered computers. In this book, you will not only learn how to use Spark and the Python API to create high-performance analytics with big data, but also discover techniques for testing, immunizing, and parallelizing Spark jobs.
You will learn how to source data from all popular data hosting platforms, including HDFS, Hive, JSON, and S3, and deal with large datasets with PySpark to gain practical big data experience. This book will help you work on prototypes on local machines and subsequently go on to handle messy data in production and at scale. This book covers installing and setting up PySpark, RDD operations, big data cleaning and wrangling, and aggregating and summarizing data into useful reports. You will also learn how to implement some practical and proven techniques to improve certain aspects of programming and administration in Apache Spark.
By the end of the book, you will be able to build big data analytical solutions using the various PySpark offerings and also optimize them effectively.
What you will learn
- Get practical big data experience while working on messy datasets
- Analyze patterns with Spark SQL to improve your business intelligence
- Use PySpark's interactive shell to speed up development time
- Create highly concurrent Spark programs by leveraging immutability
- Discover ways to avoid the most expensive operation in the Spark API: the shuffle operation
- Re-design your jobs to use reduceByKey instead of groupBy
- Create robust processing pipelines by testing Apache Spark jobs
Who this book is for
This book is for developers, data scientists, business analysts, or anyone who needs to reliably analyze large amounts of large-scale, real-world data. Whether you're tasked with creating your company's business intelligence function or creating great data platforms for your machine learning models, or are looking to use code to magnify the impact of your business, this book is for you.

eBook Preview
Author Details

Packt Publishing
Founded in 2004 in Birmingham, UK, Packt's mission is to help the world put software to work in new ways, through the delivery of effective learning and information services to IT professionals.
Working towards that vision, we have published over 6,500 books and videos so far, providing IT professionals with the actionable knowledge they need to get the job done - whether that's specific learning on an emerging technology or optimizing key skills in more established tools.
As part of our mission, we have also awarded over $1,000,000 through our Open Source Project Royalty scheme, helping numerous projects become household names along the way.
Our students work
with the Best


































Related eBooks
Annual Membership
Become a valued member of Tutorials Point and enjoy unlimited access to our vast library of top-rated Video Courses
Subscribe now
Online Certifications
Master prominent technologies at full length and become a valued certified professional.
Explore Now